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Regional Scale Land-Cover Characterization using MODIS-NDVI 
250 m Multi-Temporal Imagery: A Phenology Based Approach 
 
 
ABSTRACT 
 

 Currently available land-cover data sets for large geographic regions are produced on an 

intermittent basis and are often dated.  Ideally, annually updated data would be available to 

support environmental status and trends assessments and ecosystem process modeling.  This 

research examined the potential for vegetation phenology based land-cover classification over 

the 52,000 km2 Albemarle-Pamlico Estuarine System (APES) that could be performed annually.  

Traditional hyperspectral image classification techniques were applied using MODIS-NDVI 250 

m 16-day composite data over calendar year 2001 to support the multi-temporal image analysis 

approach.  A reference database was developed using archival aerial photography that provided 

detailed mixed pixel cover type data for 31,322 sampling sites corresponding to MODIS 250 m 

pixels.  Accuracy estimates for the classification indicated that the overall accuracy of the 

classification ranged from 73% for very heterogeneous pixels to 89% when only homogeneous 

pixels were examined.  These accuracies are comparable to similar classifications using much 

higher spatial resolution data, which indicates that there is significant value added to relatively 

coarse resolution data though the addition of multi-temporal observations. 
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INTRODUCTION 

Land-cover (LC) classification methods for remotely sensed image data have, to date, 

made only limited use of multi-temporal remote sensor data.  Typically, images are collected for 

the spring, summer and fall seasons to support regional scale LC classification efforts (Homer et 

al., 2004).  Multi-temporal images are also used to support change detection.  In change 

detection, images of a given area, separated by some time interval, are compared to identify 

pixels that changed during the interval (Lillesand and Kiefer 2003).  The images’ acquisition 

dates are nominally chosen so that they fall as closely as possible to anniversary dates.  This 

approach minimizes spectral differences between the images caused by factors such as seasonal 

vegetation phenology, sun angle and shading, cloud cover, and atmospheric particulate 

composition (Jensen 2004).  Using this traditional spectral analytical approach, vegetation 

phenology is essentially noise that can substantially contribute to poor classification accuracy.  

Studies reporting the use of multi-temporal image data for classification often include 

relatively few dates, possibly due to a lack of cloud-free image availability, cost, and processing 

requirements.  A basic multi-temporal approach is the use of leaf-on and leaf-off images, which 

provides greater vegetation phenology information than is available with only one image (Goetz 

et al. 1999, Varlyguin et al. 2001).  Seasonal images have also been used in LC classification 

with some success (Loveland at al. 1995, Lambin 1996, Roberts et al. 1997, Goetz et al. 2004).  

Vegetation phenology represents a potentially significant source of LC information (Reed et al. 

1994, Senay et al. 2000, Loveland et al. 2000).   Since most of the landmass of the world is 

covered by vegetation, taking into account phenology when performing LC classification may 

yield more accurate maps.  However, only a limited number of studies to date have explored the 
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potential of employing a complete year of uninterrupted vegetation phenology data as the basis 

for a LC classification.   

The objective of this study was to develop a phenology-based LC classification of the 

Albemarle-Pamlico Estuarine System (APES) using a time series of 23 MODIS 250 m 

Normalized Difference Vegetation Index (NDVI) composite images for calendar year 2001.  The 

classification used a hybrid Anderson Level 1-2 schema (Anderson et al. 1976).  To obtain 

optimal classification accuracy, the NDVI data were filtered to correct pixels containing low 

quality or erroneous values, pixels containing water were removed from the image stack.  The 

agriculture areas (pixels) were partitioned from non-agriculture areas.  Non-agriculture image 

pixels were classified using hyperspectral image processing techniques, where the spectral data 

were substituted with NDVI data that tracked the annual vegetation penology cycles. 

 

Study Area 

The study area for this project was the 52,000 km2 Albemarle-Pamlico Estuary System 

(APES) drainage basin in North Carolina and Virginia (Figure 1).  The APES is the second 

largest estuarine system in the United States (after the Chesapeake Bay) and represents a major 

resource base, through commercial and private fishing, tourism, recreation, agriculture, forestry, 

and mining (APNEP 2005).  The study area is composed of four physiographic provinces: Valley 

and Ridge, Blue Ridge, Piedmont, and Coastal Plain, and includes four major river basins, the 

Chowan, Roanoke, Tar, and Neuse.  The Neuse River Basin (NRB) is designated as a Near-

Laboratory Long-Term Research Area (NLLTRA) by the U.S. Environmental Protection Agency 

(USEPA), and has been used extensively since 1998 for remote sensing methods development 

research (Lunetta et al. 2001, 2002, 2003, 2004).  Finally, the APES is one of 20 National Water 
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Quality Assessment (NAWQA) Program Study Units designated by the United States Geological 

Survey (USGS).  The NAWQA was established the site in 1991 to assess and monitor water 

quality status and trends as part of a national monitoring program (Spruill et al. 1998).  The 

APES was selected for this research because it contains a wide variety of cover types and land-

use activities, which are representative of the mid-Atlantic and southeast United States.   

 

METHODS 

 The general approach in this project consisted of the following steps: reference 

data set creation, image preprocessing, water mask creation, agriculture mask creation, and land-

cover classification.  The project flow for all preprocessing and classification steps is shown in 

Figure 2. 

 

Reference Data 

An important step in any LC analysis is the creation of a reference data set with which to 

assess the accuracy of the final classification product (Congalton and Green 1999).  A 

complicating factor in assessing the accuracy of a classification derived from 250 m image data 

in the APES was the disparity between the image pixel size and the average patch size of the 

landscape.  A previous classification of the NRB by Lunetta et al. (2003) using Landsat ETM+ 

and SPOT multi-spectral (XS) data had an effective minimum mapping unit (MMU) of 0.4 ha. 

Overlaying a MODIS 250 m pixel grid over this classification revealed that approximately 5% of 

MODIS pixels contained homogeneous cover types at that MMU.  Since the APES is very 

heterogeneous at the 250 m scale, with approximately 95% all of the pixels in the study area 

composed of a mix of cover class types, a reference data set was required to provide sub-pixel 
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LC information.  USGS Digital Orthophoto Quadrangles (DOQs) were selected as the base data 

source for this sub-pixel reference information. 

The APES contains elevations from mountains to coastal bottomland forests and beaches.  

To capture the variability of the study area, the study area was stratified by the thirteen major 

Bailey eco-regions present (Table 1) and one USGS DOQs was randomly selected for each eco-

region (Figure 3, Table 2).  The thirteen DOQs were obtained from the North Carolina Center for 

Geographic Information and Analysis (NC-CGIA) and the Virginia Economic Development 

Program (VEDP).  Two quarter quads (one half) of the Spencer, NC DOQs were panchromatic 

and the remaining 50 of the 52 total quarter quads, were color infra-red (IR).  The acquisition 

dates of the DOQs ranged from 1998 to 1999, and represented the best contemporaneous data 

available for use with the 2001 MODIS data.   

Each selected DOQ was overlaid with a 250 m fishnet corresponding to the pixels of the 

MODIS NDVI data (Figure 4a).  Each cell was assigned a unique numeric identifier (n=31,322) 

and was then overlaid with a 100 point dot grid (Figure 4b).  The cells were examined by two 

trained aerial photography interpreters, who counted the numbers of dots that fell over the cover 

classes of interest (Table 3, Appendix A).  This procedure provided percentages of each cover 

class within the corresponding MODIS pixels.  The interpreters were directed to provide Level 2 

class percentages when possible.  In situations where the correct Level 2 class label was difficult 

to ascertain, the interpreters provided only a Level 1 label.  For example, in mixed forests where 

neither deciduous nor coniferous trees predominated, the interpreters chose the Level 1 label of 

“woody.”   
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NDVI Data Preprocessing 

The multi-temporal images used in this research were acquired from the NASA Terra 

(AM-1) satellite’s Moderate Resolution Imaging Spectroradiometer (MODIS) sensor.  The 

MODIS 250 m NDVI product (MOD13Q1) provided the needed vegetation phenology data.  

Although MODIS NDVI scenes (16-day composites) were acquired for calendar years 2000 

through 2004, only the 2001 data (n=23) were directly used for the LC analysis.  The images 

were resampled using a nearest neighbor operator from their native Sinusoidal projection to the 

Albers Equal Area Conic projection.  The individual scenes were subset to the APES study 

boundary and stacked into one image.  Separate image stacks were developed for the NDVI data 

and the Quality Assessment Science Data Set (QASDS), which provided pixel-wise data quality 

ratings.  The NDVI data stack was then subjected to three filtering and cleaning steps.  First, 

anomalous high and low values were identified using a fixed threshold value.  Anomalous pixel 

values were deleted and flagged for further processing.  Second, NDVI pixels that fell below the 

acceptable QASDS quality level were deleted and flagged.  Third, the flagged pixel values were 

estimated using nonlinear deconvolution.  The final preprocessing step was to remove (mask) 

those pixels containing water or agriculture from the data stack. 

First, anomalous data values were filtered to remove gross errors in the NDVI data.  

Anomalous values were eliminated by deleting and flagging pixels when their NDVI data values 

suddenly dropped or increased and then returned to near the previous NDVI value. The threshold 

for removal of data spikes was determined through empirical comparisons of original and filtered 

spectral profiles at various threshold values.  The NDVI data stack was filtered using threshold 

values ranging from 0.10 to 0.25 NDVI.  A high threshold (0.25) retained many of the 

anomalous features, while a low threshold (0.10) eliminated what was judged to be valid data.  
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The optimal threshold value was determined to be 0.15.  This threshold value eliminated most of 

the obvious anomalous values while preserving seasonal and local variations. Clearly, choosing a 

threshold for this type of filtering was subjective; however, this step was necessary, as the 

QASDS data did not flag as low quality many of the pixels that exhibited clearly anomalous 

values.  The threshold was carefully chosen to be as conservative as possible, while still 

eliminating the gross errors. 

Next, QASDS filtering was performed to delete and flag low quality NDVI pixels.  The 

QASDS provides a large amount of information related to potential quality problems of 

individual NDVI pixels, including atmospheric aerosol quantity, presence of cloud cover, 

presence of snow and ice cover, likelihood of shadow, and whether BRDF correction was 

applied.  This information is summarized in the Usefulness Index (UI), which ranges from 

“quality too low to be useful” to “perfect quality.”  After examining the spectral profiles of 

pixels with UI values of fair, acceptable, good, high, and perfect, the “acceptable” quality level 

was chosen as the minimum.  Pixels with values below “acceptable” were deleted and flagged 

for further processing.   

Last, a non-linear deconvolution was incorporated that transformed the filtered data into 

the frequency domain by Fourier transformation.  The data stack was processed using a nonlinear 

deconvolution approach described by Roberts et al. (1987).  This procedure separated the noise 

spectrum from the signal spectrum of the data.  The noise spectrum was discarded, and an 

inverse Fourier transformation of the signal spectrum back to the time domain provided a 

cleaned NDVI spectrum for all pixels in the stack.  The previously deleted NDVI data points 

were assigned values from this cleaned spectrum.  Thus, a complete filtered and cleaned NDVI 

spectrum was created for all pixels in the 2000-2005 data stack (Figure 5). 
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Water Mask 

Differences in water levels over time create significant temporal variation in NDVI at 

water-land boundaries.  Clear, deep water absorbs nearly all incident near-IR energy, but shallow 

or turbid water’s infrared absorption can vary greatly depending on depth and water constituents 

(Wetzel, 1975).  Water’s visible and infrared reflectances in general differ substantially from 

those of the bare soil or vegetation that may be exposed at times of low water depth.  Since IR 

and red reflectances are the two components of the NDVI, tidal and seasonal depth changes 

present a significant source of NDVI contamination. The APES has a long coastline on the 

Atlantic Ocean, as well as numerous large lakes and other smaller bodies of water such as hog 

lagoons and ponds.  Upon examination of the cleaned NDVI stack prior to classification, it was 

apparent that water-containing and water edge pixels had to be removed from the image.   

A water mask was created using Landsat ETM+ 30 m data using image dates that varied for 

each World Reference System-2 (WRS-2) Path/Row due to cloud cover and data quality 

problems.  However, at a minimum, winter and summer images were available for at least two 

years between 2000 and 2003 for each Path/Row.  The nine Path/Row combinations in the APES 

were separately processed using the following approach.   

• The images were georectified and the ETM+ bands 4 (0.76-0.90 µm) and 5 (1.55-1.75 

µm) were subset and stacked in chronological order.   

• In each band, reflectance values were sampled in water areas, and a reflectance threshold 

for each band was empirically determined. 

• Binary water/non-water masks were created from the individual band thresholds.   
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• If a pixel was identified as water in all bands, it was assigned to the water category.  

Otherwise, if ≥2 bands identified the pixel as water, the pixel was assigned to a 

transitional category.  Remaining pixels were assumed to be non-water. 

• The transitional pixels were separated using the ISODATA algorithm into 15 clusters.  

These clusters were then assigned to one of four groups: seasonal water, submerged 

agriculture areas, shadows, and unclear.  Seasonal water pixels were added to the water 

sample.  Submerged areas and shadows were assumed to be non-water.   

• Unclear pixels from the previous step were separated using ISODATA into 15 further 

clusters.  These clusters were then divided into the same four groups as above.  Again, 

seasonal water was added to the water sample, and submerged areas and shadows were 

assumed to be non-water.  There were no unclear pixels remaining. 

• To generate the final 30 m water masks, pixels in the water sample were assigned a value 

of one and all others a value of zero. 

• Finally, the water mask was scaled up to 250 m by overlaying the MODIS pixel grid over 

the 30 m water mask. All 250 m pixels that contained any 30 m pixels identified as water 

were removed from the NDVI image stack and were later classified as water. 

 

This approach, while complex and tedious, produced a high quality water mask.  A qualitative 

third party review of the mask was performed by comparing the water mask image to the base 

ETM+ data.  No significant discrepancies between the two data sets were found.  
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Land-Cover Classification 

Hyperspectral image classification techniques operate on the hypothesis that different 

image features of interest exhibit reflectance spectra that vary by wavelength in predictable and 

differentiable ways (Boardman et al 1995, Green et al 1998).  Temporal image profile features 

can also exhibit predictable variation.  For example, NDVI temporal profiles of healthy 

deciduous forests show a spring green-up as new leaves are formed, a sustained period of high 

NDVI in the summer months, a gradual decrease in NDVI in the autumn as senescence occurs 

and leaves are shed, and sustained low NDVI in the winter.  In contrast, the NDVI “spectra” of 

healthy coniferous forests are much flatter, showing only a small green-up in the warmer months.  

Figure 6 shows sample spectra from the APES for 2001.  The final output class list for the image 

stack is shown in Table 3.  The data stack used for classification consisted of the filtered 

MODIS-NDVI data for 2001. 

A complicating factor that arose during initial attempts to classify the NDVI stack using 

hyperspectral analysis techniques was that the temporal spectra of agriculture pixels were found 

to be very similar to other cover classes of interest.  For example, row crop pixels often exhibited 

temporal profiles that were nearly identical to deciduous forest pixels.  Similarly, fallow 

agriculture pixels were similar to maintained lawns and some coniferous forest pixels.  These 

confusions could not be satisfactorily resolved, and thus the agriculture pixels were separated 

from non-agriculture using a mask created from Landsat ETM+ 30 m mosaic from March of 

2000.  Pixels identified as agriculture in this mask were assigned that label as their final 

classified value. 
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The non-agriculture image stack was processed using the Sequential Maximum Angle 

Convex Cone (SMACC) endmember model (Research Systems Inc. 2005, Gruninger et al. 

2004).  The SMACC tool identifies spectral image endmembers and determines abundances 

through a sequential partitioning of bright and dark pixels.  SMACC identifies the brightest pixel 

in the image and then finds the pixel most different from that bright pixel.  Then, SMACC finds 

the pixel that is most different from the previous two.  This process is iterated until a pixel is 

found that is already a member of a previous group or until the requested number of endmembers 

is found.  The SMACC tool was designed to find endmembers from calibrated hyperspectral 

data, and was not intended to process multi-temporal imagery.  However, the second endmember 

returned by the SMACC tool was found to correspond well to urban areas.  Thresholding this 

endmember to select values from 0.2 to 0.7 provided a delineation of urban areas in the APES.  

These areas were subset from the image stack and the remaining pixels were processed using 

other hyperspectral techniques, as the SMACC tool did not prove useful for further 

classification. 

Image based phenology spectra representative of the remaining classes of interest were 

chosen from homogeneous pixels throughout the study area (identified from the reference data).  

These included three deciduous forest, three coniferous forest, and two woody wetland spectra.  

These phenology spectra were supplied as inputs, along with the image stack, to the Spectral 

Angle Mapper (SAM) algorithm.  The SAM uses an n-dimensional angle vector to match pixels 

to provided spectra.  The SAM determines the similarity of two spectra by computing the angle 

between the spectra (Research Systems Inc. 2005, Kruse et al. 1993).  While performing well in 

separating deciduous and coniferous forest, the SAM was not able to discriminate between 

deciduous forest and woody wetland pixels, as the temporal profiles for those areas in the APES 
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were very similar.  As a result, only coniferous and deciduous classes were output from the 

SAM.  The vast majority of known woody wetland areas were classified as deciduous forest.   

The four major aggregated Bailey eco-regions in the APES – mountains, piedmont, 

coastal plain, and tidewater – differ substantially in topography and contain different vegetation 

types.  To determine whether the classification results would also differ if processed separately 

by eco-regions, the piedmont region was subset from the APES stack and processed using the 

same steps as above.   

As mentioned above, confusion related to the similarity of agriculture temporal profiles 

with other cover classes required agriculture pixels to be separated from non-agriculture pixels.  

To demonstrate the necessity of this step, the above classification steps were repeated with 

agriculture pixels present in the image stack.  The only departure from the steps outlined above is 

that the SAM was provided with two agriculture spectra in addition to those previously listed.   

To determine whether sub-pixel class abundances could be extracted using temporal 

profiles, the deciduous and coniferous pixels classified by the SAM were analyzed using Linear 

Spectral Unmixing (LSU).  The LSU method assumes that each pixel is a linear combination of 

its constituent endmembers (Research Systems Inc. 2005).  In this case, the endmembers were 

the coniferous and deciduous forest spectra that were provided to the SAM.  The output of the 

LSU was a two band image giving the abundances of the two endmembers.  The LSU class 

abundances were correlated with the reference class abundances for all pixels in the reference 

data set that contained deciduous or coniferous forest.  The correlation was measured using the 

Pearson correlation coefficient. 
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Accuracy Assessment 

The full reference data set for this project consisted of 31,322 samples; however, the final 

classified map contained only a subset of the classes present in the reference data.  The woody 

aquatic, shrub, bare, herbaceous aquatic, maintained, and pasture could not be differentiated 

during classification.  Thus, reference data pixels containing greater than 50% coverage of these 

classes were removed from consideration.  In addition, since some Level 2 classes were 

classified, reference data pixels containing a majority of the Level 1 only samples in those 

categories were also removed from the reference data.  For example, since the classification 

discriminated between coniferous and deciduous forest, the general Level 1 label of “woody” 

was ignored.  Allowing the removed samples to remain in the reference data set would have 

unfairly lowered the accuracy estimate because all of the samples would have been counted as 

incorrect.  Removing the samples, however, did not undeservedly raise the accuracy estimate, 

since the samples were not counted as correct – they simply were not considered.  The final 

number of samples in the reference data set was 17,511 pixels. 

Error matrices were constructed to assess the accuracy of each classified map.  These 

included overall and class accuracies when agriculture was removed before classification versus 

when it was included in the classification procedure, accuracies of the broader aggregate eco-

regions (Table 1) when partitioned from the overall classification, and accuracy of the Piedmont 

aggregate eco-region when it was classified separately.  Accuracies were further broken out by 

class pixel composition threshold (i.e., the area percentage of the majority class in the pixel).  

This procedure showed how the classification performed with varying degrees of pixel 

heterogeneity. 
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RESULTS 

The final LC product for the APES is illustrated in Figure 7.  This map was derived from 

the steps described above in which agriculture pixels were removed prior to classification.  Table 

4 shows accuracy estimates for this classification broken out by pixel composition threshold 

(PCT).  For a high PCT, i.e., 90% or 100%, the classification accuracy estimate was very good – 

88% and 89%, respectively.  As the pixels became more mixed, however, classification accuracy 

decreased, to a low of 73% at a PCT of 50%.   This result was not unexpected, as one would 

predict that mixed pixels would be more challenging to classify than homogeneous pixels.  

Standard z-tests, based on the Kappa statistic and its variance, showed that, with the exception of 

the 90% PCT versus 100% PCT matrices, each matrix in Table 4 is significantly different from 

the others at an alpha level of 0.05. 

The poorest performing class was urban, which exhibited widely variable class accuracy 

estimates over the six PCTs.  Much of the variability in urban class accuracy resulted from the 

fact that there were relatively few urban areas in the 13 DOQs selected as the reference data 

source.  For example, there were only five urban reference pixels at a PCT of 100%.  The 

greatest number of urban reference pixels (n=266) occurred at the 50% PCT.  However, that 

number represented only 1.9% of the 13,871 total reference pixels at that PCT.  Given the small 

urban sample size, accuracy estimates for the class should be viewed with skepticism.  Visual 

accuracy assessment of urban areas, through overlay of the classification on ETM+ images, 

indicated that the estimates were not representative of the actual accuracy of the class, which was 

judged to be satisfactory.   
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Accuracy Assessment 

Overall accuracy assessment results, including estimates with agriculture included in the 

classification procedure, are illustrated in Figure 8 and summarized Table 5.  In addition, Figure 

8 and companion Table 5 show the percentages of the reference pixels that fell into each PCT.  

For example, only 6.0% of the APES was composed of homogeneous 250 m pixels.  This result 

agreed quite well with the 5.0% estimate that was previously derived from the NRB 1998-1999 

classification using ETM+ data (Lunetta et al. 2003).  

The difference in the accuracies of the “agriculture excluded” versus “agriculture 

included” classifications varied considerably over the PCTs.  The largest difference, over 20%, 

occurred at the 50% PCT.  Z-test results indicated that the difference between the two accuracies 

was significant at all PCTs.  Clearly, the separation of agriculture pixels improved the accuracy 

of the classification considerably, and was a necessary step in achieving acceptable results.  The 

creation of the agriculture mask was difficult, involving approximately 80 man hours of work, 

and is an obvious drawback to using such a classification method in larger study areas.  

However, in parts of the world where agriculture is not as prevalent, or, like the U.S. Midwest, 

occurs in larger and more regular areas, this approach is highly feasible for larger studies.   

Figure 9 illustrates the accuracies of the “agriculture included” and “agriculture 

excluded” classifications broken out by aggregate eco-region and by PCT.  The pattern displayed 

in Figure 8, in which accuracies were higher when agriculture was excluded, held true for every 

eco-region except the Tidewater, where the accuracy was slightly higher when agriculture was 

included in the classification.  However, z-tests showed that none of the Tidewater accuracy 

differences were statistically significant.  All other “agriculture included” versus “agriculture 

excluded” z-tests indicated a significant difference except the Coastal Plain 100% PCT test.  The 
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likely reason for the Tidewater’s deviation from the previous pattern is that the Tidewater in the 

APES contains several very large collective farms, which are much more homogenous than other 

smaller farms in the study area.  As a result, the spectral classifier was able to identify these areas 

when agriculture was included.  In the Mountains eco-region, the disparity between the two 

accuracy estimators was quite large, and the accuracy of the “agriculture included” classification 

decreased as the PCT increased.  This result likely occurred because the agriculture areas in the 

mountains tended to be linear in shape and thus increased the number of heterogeneous edge 

pixels, which the classifier was less able to correctly categorize. 

Also shown in Figure 9 are the accuracy estimates for the Piedmont eco-region when it 

was classified separately from the rest of the study area.  At every PCT, the Piedmont-only 

classifier performed marginally worse, but z-test results showed a significant difference only at 

the 90% PCT.  The Piedmont is the most heterogeneous part of the APES, so it is possible that 

the accuracy estimates were lower because the classifier was not able to take advantage of the 

purer pixels present in other eco-regions (i.e., Mountains and Tidewater). 

 

Reference Data 

A significant concern when using multiple interpreters is inter-interpreter bias.  Some 

degree of bias will always exist; however proper training and clear guidelines can minimize the 

problem.  For assessment purposes, the two interpreters duplicated efforts on a randomly chosen 

quarter quad.  The Level 1 class percentages assigned by the interpreters to the pixels in this test 

quarter quad were compared.  Table 6 shows the results of this comparison, which indicate that 

the two interpreters provided very similar class percentages.  For example, in 81.2% of the cells 

for which percentages were provided for the impervious class, the two interpreters gave identical 
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values.  At a minimum, across all of the classes, approximately 90% of the cells had a difference 

of 10% or less.  Very few cells, 1.4% for the herbaceous class and 1.7% for the woody class, had 

differences in assigned class percentages that exceeded 50%.  Some of those cases were the 

result of typographical errors that were subsequently corrected.  These results show that the two 

interpreters provided very similar interpretations of the test DOQQ, and likely did so throughout 

the study area. 

The reference data sample was not drawn from a completely randomized design.  The 

DOQs used were selected at random, but the entire contents of each DOQ were used as reference 

data.  As a result, spatial autocorrelation among reference pixels may have introduced bias into 

the sample (Congalton and Green 1999).  This bias was mitigated by assessing the accuracy of 

the classification at the different PCTs.  As the pixels became more pure, they became less 

numerous, and so not as affected by spatial autocorrelation.  For example, at the 100% PCT, 

there were only 1019 reference pixels throughout the APES.  Finally, as is shown in Figure 8, 

only approximately 80% of the study was represented by the reference data.  Areas such as 

wetlands were excluded from the reference data.  As a result, accuracy estimates for these areas 

are not provided, and should not be inferred from the existing reference data. 

 

Linear Spectral Unmixing 

The Linear Spectral Unmixing algorithm that was applied to pixels containing deciduous 

and coniferous forests resulted in class abundances that correlated well with the pixel 

compositions quantified in the reference data.  The correlation coefficients (r2) between the sub-

pixel LSU data and the reference data were 0.89 for the deciduous class, and 0.83 for the 

coniferous class.  This result indicated that the unmixing algorithm was able to extract sub-pixel 
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data from the coarse 250 meter pixels.  The use of greater temporal resolution compensated for 

the lack of spatial resolution in the image data.  This analysis was limited, in that it examined 

only two classes that had quite different phenologic responses; however it may be possible to 

obtain similar results using less distinct classes.   

 

DISCUSSION 

Spectral and temporal based classification techniques are employed to accomplish the 

same goal, accurate LC classification; however the methods by which they do so are very 

different.  The choice of a spectral or temporal (or hybrid) classifier depends upon the objectives 

of the study.  Spectral classifiers can be used to achieve goals that temporal classifiers cannot.  

For example, a temporal classifier would likely be less useful for differentiating species of co-

located deciduous trees, as the spring green-up would be occurring nearly simultaneously among 

the species.  In contrast, a temporal classifier may provide better results than a purely spectral 

classifier when mapping agricultural crops, as planting and harvest dates for different crop 

species may vary significantly.   

When choosing a data source for temporal classification, sensor resolution is an 

important issue.  High spatial resolution satellites have relatively long revisit times, and, given 

inevitable weather or technical problems, it can be difficult to obtain sufficient images to 

incorporate adequate phenology information for a large area such as the APES.  To construct 

only spring and fall ETM+ mosaics for the APES would require 18 scenes.  The 16-day revisit 

time of the Landsat satellites, and the high likelihood that clouds would obscure parts of one or 

more scenes, make it likely that images could not be acquired during the desired times.  In 
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contrast, lower spatial resolution sensors such as MODIS provide daily coverage of the earth, 

and so weather events are much less of an obstacle. 

For any multi-temporal analysis, positional accuracy of the data sets used is of paramount 

importance.  This is particularly true for an approach such as that presented here, which requires 

near perfect co-registration of the images in the time series stack.  MODIS project scientists have 

reported 50 m geolocation accuracy at nadir (Wolfe et al. 2002).  An in-house assessment of 

MODIS geolocation accuracy in the APES that encompassed the entire MODIS swath (both 

nadir and off-nadir) resulted in an RMS error of approximately113 meters.  This result was well 

below one-half of a MODIS pixel width, and so the positional accuracy of the data appeared to 

be quite good. 

 The inability of the classifier to discriminate wetlands was a significant limitation of the 

approach applied here.  However, classifying wetlands has long been problematic in remote 

sensing (Ozesmi and Bauer 2002).  In the first iteration of the Multi-Resolution Land 

Characteristics (MRLC) Consortium’s National Land Cover Data (NLCD), wetlands were not 

classified spectrally.  Rather, the U.S. Fish and Wildlife Service’s National Wetlands Inventory 

(NWI) data were used as a mask to identify wetlands.  An analogous approach could have been 

used in this study. 

The temporal classification method presented here is expected to be applicable to areas 

other than the APES.  The most onerous tasks would be creation of the water and agriculture 

masks.  In this study the water mask was developed from ETM+ data already in hand rather than 

from the MODIS data stack.  Preliminary attempts to mask water from the MODIS data using 

NDVI band thresholds produced usable results, but did not allow for sub-pixel identification of 

water.  The decision was taken to use the ETM+ data to make the water mask as broad as 
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possible to remove even small streams and ponds.  Acceptable results may be obtained through 

the use of a less comprehensive water mask based on the MODIS data.   

The agriculture mask was developed by heads-up digitizing ETM+ data, and required a 

considerable time investment.  This step may be eliminated through the use of the forthcoming 

agriculture mask data set for the United States that is being developed by the United States 

Department of Agriculture (USDA), National Agriculture Statistical Service (NASS).  The 

product is based on ETM+ data and will provide a high resolution delineation of agricultural 

plots that may be substituted for a manually derived mask, thus substantially reducing the 

preparation time required for a project of this type (NASS 2002).  Using the NASS product in 

combination with a water mask created from the MODIS data, a classification of this type for an 

area the size of the APES could be completed relatively quickly and economically. 

 

CONCLUSIONS 

This study demonstrated successful phenology-based LC classification using established 

hyperspectral analysis techniques applied to temporal data.  The value added to relatively coarse 

spatial resolution images by incorporating vegetation phenology information was significant; 

sub-pixel information was extracted from the image data through the use of multiple temporal 

observations per pixel.  The approach described herein provides LC classification accuracies 

comparable to those of maps derived from higher resolution data.  Level 1 accuracy estimates of 

the 80 m Landsat MSS-derived North American Landscape Characterization (NALC) project for 

Mexico range from 60% to 67% and had very high standard deviations (± 20 %) (Lunetta et al. 

2002).  Accuracy assessment of the 1992 MRLC NLCD data set yielded Level 1 estimates 

ranging from 70% to 85%, depending on which federal region was considered (Wickham et al. 
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2004).  Given that the accuracy results are comparable, data availability is greater, costs are 

lower, and the approach is simpler than spectral techniques typically used in large projects, 

temporal classification may provide a viable alternative for regional or national classifications. 
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APPENDIX A  
 
Land-Cover Class Definitions 
 
Agriculture Areas used for the production of crops or livestock grazing 
Urban Includes areas with a mixture of constructed materials and vegetation, highly 

developed areas, and infrastructure 
Water All areas of open water (streams/canals, lakes/ponds, reservoirs, bays, open 

marine) 
Deciduous Areas dominated by trees that shed foliage simultaneously in response to seasonal 

change 
Coniferous Areas dominated by trees that maintain their leaves all year. Canopy is never 

without green foliage. 
 
Adapted from Cowardin et al. (1979) 
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Table 1. Bailey Eco-Regions Present in the APES and Aggregate Eco-Regions Used in Accuracy 
Assessment 

 
Map Code Subsection Name Aggregate Eco-region 

For Accuracy Assessment 
231Aa Midland Plateau Central Uplands Mountains 
231Ak Lynchburg Belt Mountains 
M221Aa Ridge and Valley    Mountains 
M221Ab Great Valley of Virginia    Mountains 
M221Da Northern Blue Ridge Mountains      Mountains 
M221Db Mestasedimentary Mountains Mountains 
231Ae Charlotte Belt Piedmont 
231Af Carolina Slate Piedmont 
231Am Triassic Uplands Piedmont 
231Ao Southern Triassic Uplands Piedmont 
231An Western Coastal Plain-Piedmont Transition Coastal plain 
232Br Atlantic Southern Loam Hills Coastal plain 
232Cb Lower Terraces Tidewater 
232Ch Tidal Area Tidewater 
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Table 2. DOQs Selected for Accuracy Assessment 
 

DOQ Name State 
Essex NC 
Four Oaks NC 
Mayodan NC 
New Bern NC 
Oxford NC 
Shiloh NC 
Timberlake NC 
Wake Forest NC 
Goode VA 
Ironton VA 
McDonald’s Mill VA 
Sedalia VA 
Spencer VA 
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Table 3. Reference Data and Classified Map Classes 
 

Reference Classified 
Herbaceous  
    Agriculture Agriculture 
    Maintained  
    Pasture  
    Herbaceous Aquatic  
Impervious  
    Urban Urban 
    Bare  
Woody  
    Deciduous Deciduous 
    Coniferous Coniferous 
    Shrub  
    Woody Aquatic  
Water Water 
Other  
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Table 4a.  Confusion Matrix for Pixel Composition Threshold of 50% 
 

 Reference Data   
 Agriculture Urban Water Deciduous Coniferous Row Total % Correct % Commission 
Agriculture 2748 65 71 478 130 3492 79 21 
Urban 2 23 7 8 0 40 58 42 
Water 48 3 456 9 4 520 88 12 

Deciduous 933 40 97 5006 243 6319 79 21 

Coniferous 243 135 96 1107 1843 3424 54 46 
         
Column Total 3974 266 727 6608 2220 n=13871   
% Correct 69 9 63 76 83    
% Omission 31 91 37 24 17  Overall Accuracy 73% 

       Kappa 0.59 
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Table 4b.  Confusion Matrix for Pixel Composition Threshold of 60% 
 
 Reference Data   
 Agriculture Urban Water Deciduous Coniferous Row Total % Correct % Commission 
Agriculture 2188 38 41 298 83 2648 83 17 
Urban 1 16 5 4 0 26 62 38 
Water 46 2 410 8 1 467 88 12 

Deciduous 608 19 51 3725 141 4544 82 18 

Coniferous 139 86 51 620 1486 2382 62 38 
         
Column Total 2982 161 558 4655 1711 n=1012   
% Correct 73 10 73 80 87    
% Omission 17 90 27 20 13  Overall Accuracy 78% 

       Kappa 0.66 
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Table 4c.  Confusion Matrix for Pixel Composition Threshold of 70% 
 
 Reference Data   
 Agriculture Urban Water Deciduous Coniferous Row Total % Correct % Commission 
Agriculture 1645 24 29 157 56 1911 86 14 
Urban 1 11 4 3 0 19 58 42 
Water 42 0 362 3 0 407 89 11 

Deciduous 355 9 35 2521 68 2988 84 16 

Coniferous 78 44 20 286 1081 1509 72 28 
         
Column Total 2121 88 450 2970 1205 n=6881   
% Correct 78 13 80 85 90    
% Omission 22 87 20 15 10  Overall Accuracy 82% 

       Kappa 0.73 
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Table 4d.  Confusion Matrix for Pixel Composition Threshold of 80% 
 
 Reference Data   
 Agriculture Urban Water Deciduous Coniferous Row Total % Correct % Commission 
Agriculture 1136 12 19 65 28 1260 90 10 
Urban 1 3 1 0 0 5 60 40 
Water 41 0 321 0 0 362 89 11 

Deciduous 195 3 18 1450 27 1693 86 14 

Coniferous 36 24 3 101 683 847 81 19 
         
Column Total 1409 42 362 1616 738 n=4196   
% Correct 81 7 89 90 93    
% Omission 19 93 11 10 7  Overall Accuracy 86% 

       Kappa 0.80 
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Table 4e.  Confusion Matrix for Pixel Composition Threshold of 90% 
 
 Reference Data   
 Agriculture Urban Water Deciduous Coniferous Row Total % Correct % Commission 
Agriculture 649 5 7 25 11 697 93 7 
Urban 0 1 0 0 0 1 100 0 
Water 36 0 277 0 0 313 88 12 

Deciduous 67 0 3 473 7 550 86 14 

Coniferous 9 4 1 30 249 293 85 15 
         
Column Total 761 10 288 528 267 n=1862   
% Correct 85 10 96 90 93    
% Omission 15 90 4 10 7  Overall Accuracy 88% 

       Kappa 0.84 
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Table 4f.  Confusion Matrix for Pixel Composition Threshold of 100% 
 
 Reference Data   
 Agriculture Urban Water Deciduous Coniferous Row Total % Correct % Commission 
Agriculture 411 3 1 11 5 431 95 5 
Urban 0 1 0 0 0 1 100 0 
Water 33 0 236 0 0 269 88 12 

Deciduous 30 0 3 153 2 188 81 19 

Coniferous 1 1 1 13 109 125 87 13 
         
Column Total 475 5 241 177 116 n=1019   
% Correct 87 20 98 86 94    
% Omission 13 80 2 14 6  Overall Accuracy 89% 

       Kappa 0.85 
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Table 5. Overall Percent Accuracy by Pixel Composition Threshold 
 

Threshold % Ag Excluded Ag Included % of Study Area 
50 73 51 79 
60 77 53 58 
70 82 56 39 
80 86 60 24 
90 88 69 11 
100 89 81 6 
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Table 6. Inter-interpreter Comparison of Reference Data at Level 1 
 

 Percentage of Cells 
Difference Impervious Herbaceous Woody Water Other 
0 81.2 50.2 44.1 90.4 99.1 
>0-10 18.3 39.7 45.2 9.6 0.1 
>10-20 0.5 6.3 6.8 0 0.3 
>20-50 0 2.4 2.2 0 0.3 
>50 0 1.4 1.7 0 0.2 
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Figure 1. The location of the Albemarle-Pamlico Drainage Basin. 
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Figure 2. Project methods flowchart 
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Figure 3. Bailey Eco-regions in the APES and reference data quadrangle locations. 
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Figure 4. Sample DOQ with (a) 250 m fishnet and (b) cells with 100 point dot grid overlays. 
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Figure 5. Sample NDVI profiles showing errors fixed during filtering and cleaning. 
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Figure 6. Sample NDVI temporal spectra for land cover classes of interest. 
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Figure 7. The final A
PES land cover classification (color). 
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Figure 8. Overall classification accuracy when agriculture was removed vs. included in 
  classification procedure. 
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Figure 9.  Accuracies of the individual eco-regions of the main classification, and the accuracy of the 
  Piedmont region when classified separately. 
 


