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Land-Cover Change Detection Using Multi-Temporal
MODIS NDVI Data

ABSTRACT

Monitoring the locations and distributions of land-cover changes is important for

establishing linkages between policy decisions, regulatory actions and subsequent land-use

activities.   Past studies incorporating two-date change detection using Landsat data have tended

to be performance limited for applications in biologically complex systems.  This study explored

the use of 250 m multi-temporal MODIS NDVI 16-day composite data to provide an automated

change detection and alarm capability on a 1-year time-step for the Albemarle-Pamlico Estuary

System (APES) region of the US.  Detection accuracy was assessed for 2002 at 88%, with a

reasonable balance between change commission errors (21.9%), change omission errors (27.5%),

and Kappa coefficient of 0.67.  Annual change detection rates across the APES over the study

period (2002-2005) were estimated at 0.7% per annum and varied from 0.4% (2003) to 0.9%

(2004).    Regional variations were also readily apparent ranging from 1.6% to 0.1% per annum

for the tidal water and mountain ecological zones, respectfully.  This research included the

application of an automated protocol to first filter the MODIS NDVI data to remove poor

(corrupted) data values and then estimate the missing data values using a discrete Fourier

transformation technique to provide high quality uninterrupted data to support the change

detection analysis.  The methods and results detailed in this article apply only to non-agricultural

areas.  Additional limitations attributed to the coarse resolution of the NDVI data included the

overestimation of change area that necessitated the application of a change area correction factor.
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INTRODUCTION

Land-cover (LC) composition and change are important factors that affect ecosystem

condition and function.  These data are frequently used to generate landscape-based metrics and

to assess landscape condition and monitor status and trends over a specified time interval  (Jones

et al., 1997).  The use of satellite-based remote sensor data has been widely applied to provide a

cost-effective means to develop LC coverages over large geographic regions.  Past and ongoing

efforts for generating LC data for the United States have been implemented using an interagency

consortium to share the substantial costs associated with satellite data acquisition, processing and

analysis.  The first fine resolution National Land-Cover Data (NLCD) set was developed for the

conterminous United States using Landsat Thematic Mapper (TM) imagery collected

between1991-1992 (Vogelmann et al., 1998).  Currently, the NLCD-2001 is under development

for all 50 States and the Commonwealth of Puerto Rico (Homer et al., 2004). 

Although the NLCD-2001 is expected to provide the most timely national LC database

currently available, the required development time will result in approximately a 6- year delay

between data collection and product availability (Homer et al., 2004).  Ideally, a more current

NLCD product would be available to support on-going environmental assessment and policy

decisions.  To achieve this goal in a cost-effective manner, one possible approach would be to

identify areas of LC change occurring subsequent to 2001 and append the NLCD-2001 for only

those areas that have undergone change.  The updated NLCD would not only provide the user

with current LC data, but could also be used to identify both the pattern and nature of changes

that had occurred between dates of interest.  Other advantages associated with the updated

editing change images would include, (a) potentially substantial cost savings, (b) no introduction
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of new classification errors for non-change areas, and (c) minimization of registration errors that

typically limit the overlay of multiple date coverages (post-classification) to support change

detection analysis.  Major impediments that need to be overcome for the development of

practical methods for large-area change detection monitoring using remote sensor data include

both the elimination or significant reduction of inter- and intra-annual vegetation phenology

mediated errors and robust methods for error assessment.

There is also an expanding need for continuous data streams to support the development

of the next-generation of spatially distributed landscape process models that would incorporate

both greater spatial resolution and higher frequency simulations (time-steps).  Specifically,

remote sensing can provide estimates of standing Photosynthetically Active Biomass (PAB) that

can serve as a nearly continuous measurement surrogate of primary productivity distributions

and provide accurate measurement metrics of the timing and duration of important physiological

events (i.e., green-up, duration of growing season, and senescence).  Desirable diagnostic data

include numerous Vegetation Indices (VIs) such as the Normalized Difference Vegetation Index

(NDVI), fraction of Photosynthetically Active Radiation (fPAR), and Leaf Area Index (LAI). 

To maximize both performance and utility, future LC change detection methods that incorporate

PAB data streams could provide a robust approach for the near real-time monitoring of LC

change events while simultaneously supporting the development of landscape indicators,

modeling of important to landscape processes, and the forecasting of future LC change

distributions.

BACKGROUND 
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Past spectral-based change detection techniques have tended to be performance limited in

biologically complex ecosystems due, in larger part, to phenology induced errors (Lunetta et al.,

2002a,b).  An important consideration for LC change detection is the nominal temporal

frequency of remote sensor data acquisitions required to adequately characterize change events

(Lunetta et al., 2004).  Ecosystem-specific regeneration rates are an important consideration for

determining the required frequency of data collections to minimize errors.  As part of the natural

processes associated with vegetation dynamics, plants undergo intra-annual cycles (phenology). 

During different stages of vegetation growth, plant structures and associated pigment

assemblages can vary significantly.  Our ability to identify vegetation classes using remote

sensor systems is a result of wavelength specific foliar reflectance (0.76-0.90 µm), pigment

absorptions (0.45-0.69 µm), and foliar moisture content (1.55-1.75 µm).  The same vegetation

type can appear significantly different and different types similar, at various stages during intra-

annual growth cycles.

Also, significant difficulties in evaluating the performance of change detection methods

result from the inability to adequately characterize outcome accuracies (Khorram et al., 1999). 

Unlike typical LC classification assessment that requires only single date validation data, change

detection validation data must be available for multiple dates to provide sufficient change event

documentation (i.e., before and after).  In particular, the characterization of change omission

errors represents an especially difficult challenge (Lunetta et al., 2002b, 2004).  Because LC

change (conversion) is a relatively rare occurrence over a large area it is problematic to derive a

robust estimate of change omission errors.  Consequently, standard LC accuracy assessment

methods tend to over estimate the actual performance.  Rather than relying on the traditional
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percent accuracy statistic, a more useful representation of performance is the Kappa coefficient

(Cohen, 1960) and characterization of the percentage of both change and no-change omission

and commission errors (Lunetta et al., 2002b, 2004). 

Remote sensing change detection techniques can be broadly classified as either pre- or

post-classification change methods.  Pre-classification methods can further be characterized as

being spectral or phenology based.  Originally, the post-classification approach was considered

to be the most reliable approach and was used to evaluate emerging methods (Weismiller et al.,

1977).  Factors that limit the application of post-classification change detection techniques can

include: cost, consistency, and error propagation (Singh, 1989).  Numerous pre-classification

change detection approaches have been developed and refined to provide optimal performance

over the greatest possible range of ecosystem conditions.  These semi-automated digital data

processing approaches include image-based composite analysis (Weismiller et al., 1977), and

principal components analysis (PCA) (Lillesand and Keifer, 1972; Byrne et al., 1980; Richards,

1984).  The most commonly applied data transformations applied include band ratioing, NDVI,

and the tasseled-cap transformation (Crist, 1985; Jensen, 2005).  Recent techniques have been

applied that can interpret data transformation results using change vector analysis (CVA) to

indicate the magnitude and nature of change (Lambin and Strahler, 1994).

Research evaluating the comparative performance of various LC change detection

methods has indicated that no uniform combination of data types and methods can be applied

with equal success across different ecosystems (Lu et al., 2004).  Cohen and Fiorella (1998)

found that composite analysis out performed both image differencing and CVA in a two-date

experiment for detecting conifer forest change using Landsat Thematic Mapper (TM) imagery in
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the Oregon Cascades.  Lyon et al. (1998) reported that the NDVI was the best performing

Vegetation Index (VI) for detecting LC changes in the biologically complex vegetation

communities in Chiapas, Mexico.  Subsequently, Lunetta et al. (2002) determined that two-date

NDVI differencing and Multiband Image Differencing (MID) both performed poorly in a

biologically complex vegetation community in North Carolina.  Analysis of LC data for the

country of Mexico using three dates of Landsat Multi-Spectral Scanner (MSS) imagery over a

two-decade (1972-1992) study period demonstrated that ecosystem variability combined with

classification errors precluded scene-wise or pixel-wise change detection (Lunetta et al., 2003).  

Past studies have demonstrated the potential of using NDVI to study vegetation dynamics

(Townshend and Justice, 1986; Verhoef et al., 1996), illustrate the value of using high temporal

resolution MSS imagery to monitor changes in wetland vegetation (Elvidge et al., 1998) and

document the importance of image temporal frequency for accurately detecting forest changes in

the southeastern United States ( Lunetta et al., 2004) .  Time series data analyses using remote

sensor data have largely focused on the use of coarse resolution ($1.0 km2) AVHRR data to

document land-cover and analyze vegetation phenology and dynamics (Justice et al., 1985;

Townshend and Justice, 1986; Justice et al., 1991; Loveland et al., 1991).  With the advent of

MODIS NDVI 250 m data, time series data analysis can be adapted for higher (moderate)

resolution applications.  However, the utility of the MODIS NDVI data products are limited by

the availability of high quality (e.g., cloud free) data Jin and Sader (2005).  The availability of

high quality data is a critical factor in determining application utility.  To best deal with the data

quality issues researchers have incorporated a number of processing techniques including

weighted regression smoothing (Li and Kafatos, 2000), Fourier and wavelet transformation
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filtering (Sakamoto et al., 2005), weighted least squares (Reed, 2006) and wavelet feature

extraction (Bruce and Mathur, 2006).

Study Objectives

The purpose of the research described here was to investigate the feasibility of using

Moderate Resolution Image Spectroradiometer (MODIS) derived NDVI data to identify change

areas on an annual time-step.   The goal was to develop an automated change detection alarm

capability for regional scale applications using a nearly continuous high quality data stream that

could also be used to support phenology-based cover type classification and further the study

agricultural land-use dynamics.  This research effort focused only on non-agriculture cover

types.  Because of the unique issues associated with differentiating between agricultural land-use

and land-cover conversions, methods for agricultural conversions to non-agricultural cover types

(e.g., urban and forest) are being developed separately from the effort described in this article.

Study Area  

This research was conducted across the 52,000 km2 Albemarle-Pamlico Estuary System

(APES) located in North Carolina and Virginia (Figure 1).  The study area includes diverse

ecoregion types ranging from tidal plain (east) to the Blue Ridge Mountains (west).  Landscape

“patch” sizes are relatively small, with approximately 95% of the study area exhibiting

heterogeneous cover within an individual MODIS NDVI (250 m) pixel.  Additionally, biological

diversity and vegetation regrowth rates are at the high end of the spectrum for locations within

the conterminous United States (Currie and Paquin, 1987).   The composition of the major
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upland-cover types throughout the area as of 2001 were approximately 51% forest, 23%

agriculture, 14% water, 7% urban and barren, 4% grassland, and 1% herbaceous wetland (NASS,

2002; Homer et al., 2004).  The predominate LC conversions that occur in the APES are

associated with deforestation for both urban development and forest harvesting (clear cutting).

METHODS

Methods incorporated in this study included the application of an automated MODIS

NDVI time series and reference databases for the APES study area to support multi-temporal

imagery analysis and accuracy assessment.  MODIS NDVI data preprocessing was conducted to

provide a filtered (anomalous data removed) and cleaned (excluded data values estimated)

uninterrupted data stream to support multi-temporal (phenological) analysis.  Figure 2 illustrates

the complete data pre-processing flow that is detailed below.  Total annual NDVI values for each

250 m grid cell within the study area (2001- 2005) were compared on an annual basis to identify 

those cells exhibiting greater than specified threshold values (decrease in NDVI) and were

labeled as LC conversion areas.  An accuracy assessment was conducted using historical aerial

photographs to document the occurrence or non-occurrence of conversion events to generate an

overall accuracy and quantify both commission and omission errors.

MODIS NDVI 16-day composite grid data (MOD13Q1) in HDF format were acquired

between February 2000 and December 2005 from the NASA Earth Observing System (EOS)

data gateway.  Details documenting the MODIS NDVI compositing process and Quality

Assessment Science Data Sets (QASDS) can be found at NASA’s MODIS web site (MODIS,

1999).  NDVI data were subset to the APES study boundary plus a 10 km buffer, re-projected
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from a sinusoidal to an Albers Equal-Area Conic projection, using a nearest-neighbor resampling

routine, and entered into a 250 m x 250 m grid cell multilayer image stack.  Separate data stacks

were developed for both the original NDVI data and QASDS.  

The NDVI data stack was first filtered to eliminate anomalous high (hikes) and low

(drops) values and then filtered for a second time using the QASDS ratings to remove poor

quality data values from the NDVI data stack.  Hikes and drops were effectively eliminated by

removing data values that suddenly decreased or increased and then immediately returned to

near the previous NDVI value.  The threshold for the removal of pseudo hikes and drops was set

at ±0.15% to achieve the best setting (determined qualitatively) to eliminate most all anomalous

points, while not inadvertently removing good data points, thus producing a smoother temporal

profile.  The MODIS QASDS data quality ratings were then applied to retain only those pixels

rated as “acceptable” or higher.  The filtered data were then transformed into frequency domain

using a discrete Fourier transformation and the signal and noise spectrum separated (Roberts et

al., 1987; Azzali and Menenti, 2000; Roerink and Menenti, 2000).  The removed (corrupted)

NDVI data points were estimated from the frequency domain signal spectrum using a nonlinear

deconvolution approach described by Roberts et al. (1987) to estimate complete “filtered and

cleaned” NDVI temporal profiles for each pixel within the APES (Figure 3).  

The variable nature of water bodies (ie., turbidity and water level fluctuations) tended to

confound change analyses and thus were excluded to reduce commission errors (false positives). 

A water mask developed using Landsat Enhanced Thematic Mapper plus (ETM+) images (year

2000) was used to delineate open water areas for exclusion from further change analysis.  ETM+

pixels with negative NDVI values were identified as open water and an overlay of water pixels
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(30 m2) was applied to the 250 m2 APES grid cells was performed and the percent open water

area within each cell was calculated for the entire APES.  Grid cells containing $30% open water

were included in the APES water mask and those containing between <30% open water were

used to create the APES transitional water mask.  Approximately 14 % of the APES study area

was included in the open water mask and 5.1% in the transitional water mask, leaving 80.8%

(approximately 42,016 km2) of the APES defined as upland (non-water).

Intensive land-use activities associated with agricultural crop rotations often confound

LC conversion determinations and can frequently result in unacceptable levels of false positives

(change commission errors).  Accordingly, an initial stratification step was implemented to

subset the agricultural versus non-agricultural pixels for independent analysis to effectively

minimize the potential for omission change errors in non-agricultural areas and commission

change errors for agricultural areas.  The identification of agricultural cells was accomplished by

manually interpreting agricultural cover using the same ETM+ data used to create the above

described water mask.  All APES 250m2 grid cells containing ™20% agricultural cover were

included in the agricultural subset for the upland areas (Knight et al., 2006).  Change analysis

methods for the agricultural areas are being developed independently of this effort for agriculture

cells throughout the APES study area.

Total annual NDVI values were computed for all upland grid cells using the filtered and

cleaned data stack.  NDVI difference values for non-agricultural areas were calculated

corresponding to each individual upland cell for all consecutive study years (i.e., 2001-2002,

2002-2003, 2003-2004, 2004-2005).  The total NDVI difference output data for the four change

periods beginning with 2001-2002 exhibited an approximately normal distribution about the
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mean (µ=0), which, for this application, represented no change in NDVI between T1 and T2. 

Standard normal distribution statistical analysis was performed to identify those cells that had

the greatest reduction in cumulative NDVI for each change period.  Four negative (decrease)

change thresholds were selected corresponding to a range of z-value probabilities (i.e., 2.0, 2.5,

3.0, 3.5).  This range of values were selected because they produced appropriate estimates of

annual change values based on previous change rate studies for the area (Loveland, et al., 2002;

Lunetta et al., 2004).

Accuracy Assessment

Reference data to support the accuracy assessment consisted of available historic aerial

photography over a two county area (Durham and Wake) in the Piedmont region of the study

area.  The accuracy assessment was limited to these two counties because they were the only

counties within the APES with sufficient historical aerial photography to support an assessment. 

Contained within these two counties are the metropolitan areas of Raleigh and Durham.  All

major cover types found throughout the APES study area were represented within the two

counties.  For each validation point, a coordinate based search was performed to identify all

available historical photographs.  Those sampling points with available photographs that both

predated and postdated the change or no-change event were identified for further processing. 

Using the two dates of photographs and NDVI temporal profile the interpreter determined the

usability of the photographs as a reference source for the assessment.  If the photographs

spanned the pre and post time of change event indicated as indicated by the temporal profile then

the photographs was deemed appropriate for assessment purposes.  However, if the timing of the
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change indicated by the temporal profile was not within the dates of photographs collection the

validation point was eliminated.   

For each assessment point with acceptable photographs, interpretations were conducted

by first delineating the cell boundary on the digital images for both dates.  The cover type(s) and

percent coverage within the cell were interpreted for both dates and recorded.  Interpretations

were conducted by two interpreters.  As part of the quality control (QC) process the lead

interpreter reviewed all interpretations for consistency and data recording completeness. Also,

for quality assurance (QA) purposes all reference image pairs were electronically filed to support

subsequent analyses (Figure 4).  Additionally, for a subset of the change points (n=52) and no-

change points (n=44) sufficient image data was available to document with a high level of

certainty the percentage of change that occurred within the cells (Figures 6 and 7). 

Reference data were developed using a stratified random sampling approach that

included both the change and no-change areas.  Change areas were weighted with a higher

proportion of samples because the vast majority of the study area was no-change for the

reference study  period.  A validation was performed only for change that occurred during 2002

due to the lack of available photographs for later time periods.  A total of 1,137 samples were

successfully validated corresponding to change (n=318) and no-change (n=819) pixels.  Note

that the no-change pixels were over-sampled to provide a sufficient sample size to assess no-

change omission errors (Table 1).

RESULTS

NDVI Profiles
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 A qualitative analysis of the temporal profiles corresponding to phenological

endmembers was performed to provide an initial performance assessment of the automated

MODIS NDVI protocol described above for producing high quality time series data to support

subsequent change detection analysis.  Figure 5 illustrates the four principal endmembers for the

Piedmont region of the study area.  The patterns and time sequencing of phenological events for

both the deciduous and coniferous forest types demonstrate the robust nature of the profiles

derived from the automated data processing procedures.  Also, the substantially lower NDVI for

the impervious compared to chlorophyll-bearing endmembers is what would be expected, and

the sawtooth pattern provided some indication of the inherent noise level in the NDVI product. 

The agricultural endmember serves to demonstrate the conflict between agricultural land-use

activities and land-cover conversions.  For example, over the first two year period (2000 and

2001) it appeared that the same (or similar) crop type was grown that exhibited a multiple

maturation growth pattern.  During year three (2002) the field appeared to be planted later in the

season with an alternative crop type, then was apparently replanted in 2003 and 2004 with a new

crop type possibly as part of a crop rotation cycle.  This change in phenological cycle

demonstrated the potential for land-cover change false positives in agricultural areas.

A unique approach to supplement the validation process is illustrated in Figure 4 which

shows an example of aerial photographs in combination with the five year NDVI temporal

profile for an accuracy assessment sampling site (reference pixel) before and after a conversion

event.   Much of the forest that was present in the May 1, 2000 image had been subsequently

cleared by the date of the companion image on September 1, 2002.  By visually interpreting the

NDVI temporal profile, it is apparent that the forest clearing began approximately mid-August
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2001 and was completed by early December 2001.  The area was in a transitional state

throughout calendar year 2002 and appears to have reached a new steady state beginning in 2003

and throughout 2004.  With the subsequent addition of the calendar year 2005 temporal profile

the achievement of a new steady state condition should be confirmed.  (Subsequent 2005 field

reconnaissance has revealed that the site was converted to a condominium complex.)

Change Detection

The change detection results for non-agricultural areas are presented in Table 2.  A

standard deviation (SD) threshold (TH) of 2.5 provided the best accuracy at 87.5% and a Kappa

coefficient of 0.67.  This result was statistically significant compared to the TH factors of 2.0

(p=0.05) and 3.5 (p=0.27); however, it was not significantly different from 3.0 (p=0.72).  Most

importantly, the TH of 2.5 provided the best balance between change commission errors (21.9%)

and omission errors (27.5%).  Alternatively, the TH of 3.0 could be applied if the goal was to

bias for lower change commission errors (19.4%) at the expense of higher omission errors

(34.2%).   Estimates of the area extent of change for the APES varied by a factor of 3.3x across

the entire TH factor range; however, the TH 2.5 to 3.0 range varies only by 0.3x (Table 3).

An important consideration for the application of the change detection procedures

presented here is the sub-pixel sensitivity or the minimal detection limit associated with the

approach.  The sub-pixel sensitivity is also important to accurately determine the area extent of

land-cover conversions.  For example, because the majority of identified changes are sub-pixel

in extent, a correction factor must be applied to capture a true area estimate of change.  Figure 6

illustrates the distribution of sub-pixel sensitivity for Wake County, NC.  Approximately 96% of
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the identified change was at the sub-pixel level, averaging 40.4%.  To best estimate the

minimum detection limit, the distribution of percent change associated with change omission

pixels can be used (Figure 7).  The distribution shows that approximately 71% of the change

omission pixels had  #20% change.  This equates to an effective minimum detection limit of

approximately 1.5 ha.  Although pixels with #20% change are detected, the detection accuracy

drops substantially (increased omission errors) below 1.5 ha (Figure 6).

The impact of using non-adjusted change detection area extent values is clearly apparent

between the raw versus adjusted values (Table 3).  Comparing the adjusted values across the

study area reveals a large (5.0x) variation in land-cover change by APES major ecological

regions (Table 4).  The tidal ecological region had the greatest adjusted average annual change

over the four year change period (1.1%), followed by the coastal plain (0.8%), Piedmont (0.5%)

and mountain (0.2%).  Although the change rate for the Piedmont was 0.5%, the adjusted

average change rate in the Raleigh metropolitan area (a subset of the Piedmont) was substantially

higher at 0.9%.  These results indicate that the tidal and coastal ecological regions, along with

major metropolitan areas, would probably require more frequent change updates than the

mountain region to provide relevant change patterns and current land-cover data sets. 

Additionally, the tidal ecoregion had undergone the greatest change during 2004 (1.6%). 

An additional analysis was conducted to better understand the relationship between cover

composition, change distributions, and detection accuracies (Table 5).  Although coniferous

forest cover represented only 14% of the APES, 44% of all changes were associated with this

cover type and were a result of the intensive silviculture operations located primarily in the tidal

and coastal ecoregions.  This change rate was approximately 3x that of the deciduous and mixed 
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forest and urban and barren areas.  Accuracies were consistently in the low 90s for all reported

cover types with the exception of the urban and associated barren cover types which were

substantially lower at 83%.

A high resolution graphic of the Raleigh metropolitan area was developed to further

evaluate both the utility and performance of the annual change products (Figure 8).  The graphic

uses Landsat ETM+ panchromatic images (15 m) as the backdrop to aid in the interpretation of

the MODIS NDVI derived annual change product.  Qualitatively, the change patterns appear to

match very well with known development patterns over the 4-year period (2002-2005). 

Individual residential communities, shopping centers and major road construction projects are

discerned corresponding to expected time period (year).  Also, the variability in change area for

the study period was consistent with known economic development patterns.  The drop in change

area for 2003 to 0.4% (60% decrease) corresponded to the economic downturn in the technology

sector; which, resulted in a dramatic slowdown in new commercial construction permits (250%

dollar value reduction) in 2002 (Wake County, 2005).  Commercial construction permits began

to rebound in 2003 and residential construction permits increased dramatically (35% increase) in

2004, resulting in a rebound back to a 1.0% change in 2004 (Table 4).  It should be noted that

change is graphically over-represented (Figure 8) by approximately 2.5x, because the average

pixel change area was only 40.4% (Figure 6).

DISCUSSION

Articulating a working definition of what constitutes LC change is an important first step

for the implementation of change detection studies and applications involving the use of remote
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sensor data.  In this study, we made the distinction between agricultural land-use activities and

land-cover change to first provide a hierarchical segmentation of our change detection

procedures.  Here the segmentation has been applied to reduce land-use mediated false positives

(change commission errors).  Additionally, this segmentation approach will be applied to support

the future development of specific analytical methods for monitoring agricultural land

conversions to non-agricultural cover types and to determine the potential for providing useful

information such as crop type and the monitoring of rotational cycles.  The implementation of

segregated agricultural and non-agricultural analytical protocols should become a practical

approach for the automating change detection for many locations within the US that exhibit

similar properties to the APES.  Additionally, this approach may be optimized when applied in a

hierarchical approach in combination with the ongoing development of agricultural maps by the

US Department of Agriculture (USDA) National Agriculture Statistical Service (NASS) based

on Landsat ETM+ imagery (NASS, 2002.).

The importance of quantifying change omission errors is critical to the development of a

robust assessment of change detection performance.  Absent sufficient data documenting change

omission errors, the tendency would be to bias the analysis to reduce change commission errors,

while potentially increasing omission errors to unacceptable levels (Table 2).  Because land-

cover conversions typically represent only a small percentage of large geographic regions (e.g.,

0.5% - 1.0%), the sampling of no-change areas at sufficient intensity to generate estimates of

change commission errors represents a significant problem.  This sampling problem is twofold,

first a sample drawn from a no-change classified area has a very low probability of being a

change omission pixel; and second, the probability of finding adequate reference data to
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determine the status of a sample site (i.e., change or no-change) is very low.  In this study we

selected approximately 2.6x more samples from the no-change bin to support the determination

of change omission errors.

With the anticipated release of the NLCD-2001 data scheduled for calendar year 2006,

efforts can be initiated to create annual change coverages beginning with 2002 using MODIS

NDVI 250 m data for numerous regions of the US where this approach may be appropriate,

providing supplemental information to support the interpretation and application of NLCD-2001

products.  At the most basic level, a MODIS NDVI-derived annual change detection alarm

product could be applied to identify those areas that have likely undergone land-cover change

subsequent to 2001.  Also, it may be possible to determine the likely outcome of the conversion,

subsequent to the return to a new steady state based on the application of MODIS NDVI

temporal profile match filtering techniques currently under development (Knight et al., 2006). 

An additional advantage of the MODIS NDVI change detection procedures developed in

this study is the capability for processing filtered and cleaned NDVI temporal profiles that track

vegetation phenology on a nearly continuous basis to support the development of regional scale

landscape process models.  For non remote sensing scientists, the NDVI temporal profiles

provide a particularly insightful data presentation that can readily be interpreted without any

formal remote sensing training.  Also, they provide a data presentation that can easily be

exploited to extract data values of potential interest using widely available desktop software

tools (i.e., phenological metrics).  The potential ease of sharing these multi-temporal NDVI

products with the general scientific community may hasten the future integration of these

products by other disciplines and potentially lead to additional unanticipated applications.
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CONCLUSIONS

The availability of no-cost MODIS NDVI data and automated data processing techniques

that provide high quality continuous time series data, represent a major advancement for the

automated monitoring annual land-cover change and vegetation condition over large geographic

regions.   Major advantages of the NDVI-based change detection approach presented here

include (a) robust results, (b) nominal computational requirements, (c) automated data

processing protocols, (d) annual change alarm product capability, and (e) rapid product delivery. 

Additional advantages include the portability of intermediate data products and results to the non

remote sensing scientific community.  This approach is particularly attractive due to the

availability of no cost MODIS data and the very low cost associated with data processing.  These

advantages are in sharp contrast to the traditional Landsat data based approaches that are

comparatively data and computationally expensive.  The increased temporal resolution of the

MODIS NDVI 250 m data has a significant advantage over traditional Landsat data for both

capturing the actual timing of the change event and the subsequent monitoring of the recovery to

the next steady state.

Disadvantages and limitations of the MODIS NDVI based change detection approach are

substantially associated with the moderate spatial data resolution (250 m).  In particular, change

events less than approximately 1.5 ha will have a low probability of being detected.  One impact

of this resolution limitation is potentially poorer accuracies for urban areas that tend to change at

finer scales (Table 5).  Also, because of the sub-pixel sensitivity of the technique, there is an

inherent and significant overestimation (approximately 2.5x) of change area extent that must be

corrected to provide reasonable change rate estimates.  This issue is particularly problematic for
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the graphic representation of change extent, because there is no practical way to directly

compensate for the overestimations.  The spatial resolution of the MODIS NDVI data

significantly limits their use for certain applications such as the monitoring of change in riparian

buffers zones and urban areas and the monitoring of other relatively fine scale conversion events

that may be associated with high value ecological resources.  Additionally, the method described

in this article will not provide robust results for areas in intensively managed landscapes (e.g.,

agricultural land).
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TABLES

Table 1.  The raw error matrix numbers for individual change detection thresholds by standard     

 deviation levels evaluated.

Table 2.  Normalized error matrices for each threshold level including Kappa coefficients and    

significance probabilities.

Table 3.   Percent adjusted change detection area results for each threshold level evaluated

corresponding to 2002.

Table 4.  Change detection results by APES  major ecological regions corresponding to a         

threshold level of 2.5 standard deviations for four change year increments.

Table 5.  APES cover type composition, change distributions and accuracies by cover type for

 Wake and Durham Counties, NC.

FIGURES

Figure 1.  Study area location map including major ecological regions.

Figure 2.  Automated data processing steps for filtering and cleaning the MODIS NDVI       

(MOD13Q1) product to support automated change detection analysis.
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Figure 3.  Temporal profiles of raw and cleaned MODIS NDVI data over a five year period 

(2000 – 2004). 

Figure 4.  Example illustrating the use of multiple date aerial photography in conjunction with      

five year MODIS NDVI profiles to validate predicted land-cover change events. 

Figure 5.  MODIS NDVI temporal profiles for the major phenological endmembers

corresponding to the Piedmont ecological region.

Figure 6.  Histogram of percent sub-pixel change area for a subset (n=52) of correctly predicted

change pixels.

Figure 7.  Histogram of percent sub-pixel change area for a subset (n=44) of no-change pixels

(change omission pixels) .

Figure 8.  The distribution of annual land-cover change for the Raleigh metropolitan area      

occurring for time periods 2002 (yellow), 2003 (purple), 2004 (red), and 2005 (blue). 

The background is 15 m Landsat ETM+ panchromatic imagery collected on October 07,

1999 (http://maps6.epa.gov).



Table 1.  The raw error matrix numbers for individual change detection thresholds by standard deviation levels evaluated. 
 

 
Reference                       

  Change 
3.5 

No-change 
3.5 

Change 
3.0 

No-change 
3.0 

Change 
2.5 

No-change 
2.5 

Change 
2.0 

No-change 
2.0 Total Correct (%) Commission (%) 

 
Change 3.5 51 7             58 87.9 12.1 
No-change 3.5 36 155             191 18.8 81.2 
 
Change 3.0     50 12         62 80.6 19.4 
No-change 3.0     26 216         242 89.3 10.7 
 
Change 2.5         50 14     64 78.1 21.9 
No-change 2.5         19 189     208 90.9 9.1 
 
Change 2.0            59 34 93 63.4 36.6 
No-change 2.0            27 192 219 87.7 12.3 
 
 
Total 87 162 76 228 69 203 86 226 1137     
 
Correct (%) 58.6 4.3 65.8 94.7 72.5 93.1 68.6 85.0       
 
Omission (%) 41.4 95.7 34.2 5.3 27.5 6.9 31.4 15.0       

 



 
        
        

  
 

 Reference            

  
 
  Change (%) No-change (%) Total (%) Correct (%) Commission (%)  

  
 

TH Factor = 3.5            
  Change (%) 20.5 2.8 23.3 87.9 12.1  
  No-change (%) 14.5 62.2 76.7 81.2 18.8  
  Total (%) 34.9 65.1 100.0      

  
 
Correct (%) 58.6 95.7   82.7   

  Omission (%) 41.4 4.3       
               κ = 0.59  

  

 
 
 

TH Factor = 3.0            
  Change (%) 16.4 3.9 20.4 80.6 19.4  
  No-change (%) 8.6 71.1 79.6 89.3 10.7  
  Total (%) 25.0 75.0 100.0      

  
 
Correct (%) 65.8 94.7   87.5   

  Omission (%) 34.2 5.3       
                 κ = 0.64  

  

 
 
 
TH Factor = 2.5            

  Change (%) 18.4 5.1 23.5 78.1 21.9  
  No-change (%) 7.0 69.5 76.5 90.9 9.1  
  Total (%) 25.4 74.6 100.0      

  
 
Correct (%) 72.5 93.1   87.9   

  Omission (%) 27.5 6.9       
                 κ = 0.67 *  

  

 
 
 

TH Factor = 2.0            
  Change (%) 18.9 10.9 29.8 63.4 36.6  
  No-change (%) 8.7 61.5 70.2 87.7 12.3  
  Total (%) 27.6 72.4 100.0      

  
 
Correct (%) 68.6 85.0   80.4   

  Omission (%) 31.4 15.0       
                 κ = 0.52  

 
* Statistical significance compared to TH Factors 2.0 (p = 0.05), 3.5 (p = 0.27), and 3.0 (p = 0.72). 

   Table 2.  Normalized error matrices for each threshold level including Kappa coefficients
   and significance probabilities. 



Table 3.   Percent adjusted change detection area results for each threshold level 
evaluated corresponding to 2002. 
 

Study Area  
(Date) 

Threshold 
Factor 
(SD) 

No. of 
Changed 

Pixels 
Changed 

Area (km2) 
Change 
Percent 

Adjusted  
Change 

Percent * 

 
Wake and Durham Counties  
(2002) 

     

 

 3.5 412 26 1.0 0.4 

 3.0 572 36 1.4 0.6 

 2.5 847 53 2.1 0.8 

 2.0 1347 84 3.3 1.3 

 
 
Albemarle-Pamlico Estuary System 
(2002)      
 

 3.5 7763 485 07 0.3 

 3.0 11194 700 1.0 0.4 

 2.5 16858 1054 1.5 0.6 

 2.0 26975 1686 2.4 1.0 

* Adjusted change factor = 0.40



Table 4.  Change detection results by APES major ecological regions corresponding to a          
threshold level of 2.5 standard deviations for three change year increments. 
 

Study Area  
(Date) 

Changed 
Area (km2) 

Change 
Percent 

Adjusted 
Change Area 

(km2) * 

Adjusted  
Change 

Percent * 
 
Mountain Ecological Region     

2002 58 0.4 23 0.2 

2003 30 0.2 12 0.1 

2004 64 0.5 26 0.2 

2005 51 0.4 20 0.2 

 
Piedmont Ecological Region     

2002 356 1.5 144 0.6 

2003 192 0.8 77 0.3 

2004 342 1.5 138 0.6 

2005 273 1.2 110 0.5 

 
Coastal Plain Ecological Region     

2002 293 1.8 118 0.7 

2003 154 1.0 62 0.4 

2004 379 2.4 153 1.0 

2005 478 3.0 193 1.2 

 
Tidal Ecological Region     

2002 342 2.0 138 0.8 

2003 302 1.8 122 0.7 

2004 677 4.0 273 1.6 

2005 445 2.6 180 1.1 

 
Albemarle-Pamlico Estuary System     

2002 1054 1.5 426 0.6 

2003 678 1.0 274 0.4 

2004 1467 2.1 593 0.9 

2005 1252 1.8 506 0.7 

 
Raleigh Metropolitan Area     

2002 40 2.6 16 1.0 

2003 16 1.1 7 0.4 

2004 38 2.4 15 1.0 

2005 43 2.8 17 1.1 

* Adjusted change factor = 0.40



 
 
 
 

 
Cover  
Type 
 

Composition (%) 
  (2001) 

Change (%) 
(2002-2005) 

 
Change Accuracy (%) 

   (2002) 
 

 
Urban  and Barren 
 

7 7 83 (n=89) 

 
Forest (Deciduous)  
 

32 35 91 (n=75) 

 
Forest (Coniferous) 
 

14 44 93 (n=41) 

 
Forest (Mixed) 
 

5 6 90 (n=10) 

 
Herbaceous/Grassland 
 

4 6 91 (n=22) 

 
Wetland (Herbaceous) 
 

1 2 (n=1) 

 
Agriculture 
 

23 NA NA 

 
Water 
 

14 0 NA 

 
 

Table 5.  APES cover type composition, change distributions and accuracies by cover type for 
  Wake and Durham counties, NC. 
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