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Mapping Cropland and Major Crop Types across 
the Great Lakes Basin using MODIS-NDVI Data 
 

Abstract 

 This research evaluated the potential for using the MODIS Normalized Difference 

Vegetation Index (NDVI) 16-day composite (MOD13Q) 250 m time-series data to 

develop an annual crop type mapping capability throughout the 480,000 km2 Great Lakes 

Basin (GLB).  An ecoregion-stratified approach was developed using a two-step 

processing approach that included an initial differentiation of cropland versus non-

cropland and subsequent identification of individual crop types.  Major crop types were 

mapped for calendar years of 2002 and 2007.  National Agricultural Statistics Service 

(NASS) census data were used to assess county level accuracies on a unit area basis 

(2002) and the NASS Crop Data Layer (CDL) was used to generate 231,616 reference 

data points to support a pixel-wise assessment of the MODIS crop type classification 

(2007) accuracy across the US portion of the GLB.  County level comparisons for 2002 

indicated 2.2, -6.8, -6.0, and -5.8 percent of area bias errors for corn, soybean, wheat, and 

hay, respectively.  Detailed pixel-wise accuracy assessments resulted in an overall crop 

type classification accuracy of 84 percent (Kappa=0.73) for 2007.  Kappa coefficients 

ranged from 0.74 − 0.69 for individual ecoregions.  The user’s accuracies for corn, 

soybean, wheat and hay were 87, 82, 81, and 70 percent, respectively.  There were spatial 

variations of classification performances across ecoregions, especially for soybean and 

hay.   Field sizes had a direct impact on the variable classification performances across 

the GLB. 
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1. Introduction 

The current movement to increase biofuel crop production could have significant 

environment consequences for water supply and quality (Carpenter et al., 1998; Osborne 

and Wiley, 1988), soil fertility and erosion (Groten, 1993; Quarmby et al., 1993), and 

global carbon balance (Houghton, 1994; Houghton and Hackler, 2000; Lai, 1998; 

Searchinger et al., 2008).  Timely and reliable information about cropland distribution is 

important to assess the environmental impacts associated with the emergence of cropping 

practices optimized for biofuel production.  Remote sensor data have long been used to 

characterize cropland at regional and global scales (DeFries et al., 1994; DeFries et al., 

1998; Liu et al., 2005; Loveland et al., 2000; Xiao et al., 2003).  Past mapping efforts 

have developed cropland map products at variable spatial resolutions ranging from 1-km 

AVHRR IGBP DIScover dataset (Loveland, et al., 2000) to the 30-meter Landsat-derived 

National Land Cover Datasets (NLCD) products (Homer et al., 2004).   The above 

products provided only a periodic snap-shot of general croplands and thus provide no 

documentation about the spatial distributions of biofuel crops (i.e., corn and soybeans).  

Recently, the National Agricultural Statistics Service (NASS) of the United States 

Department of Agriculture (USDA) generated the cropland data layer (CDL) products. 

Major crop types were mapped primarily with the AWiFS imagery; however, the CDL 

products are primarily focused on the agricultural regions in the Midwestern and 

Mississippi Delta States (http://www.nass.usda/gov/research/Cropland/SARS1a.htm).  

For many other study areas, the annual crop practices and crop rotation information were 

generally unavailable (Craig, 2001; Wardlow and Egbert, 2008).  This has contributed to 
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limiting the soil/water quality assessment efforts that typically require crop map and 

crop rotation information as inputs (Gassman et al., 2006).  

Recent studies have indicated that the Moderate Resolution Imaging 

Spectroradiometer (MODIS) data has high potential for mapping crops by incorporating 

both moderate spatial resolution and high temporal resolution attributes. The application 

of time-series data or phenology-based analysis has been the basis of many cropland 

mapping applications using MODIS data (Chang et al., 2007; Wardlow et al., 2006; 

Wardlow et al., 2007; Xiao et al., 2005).  Chang et al. (2007) examined the potential of 

using MODIS 500 m data for the mapping of corn and soybean of the United States.  

Normalized Difference Vegetation Index (NDVI), surface temperature, and surface 

reflectance were used as inputs to estimate corn and soybean proportions.  Using MODIS 

time-series data, Xiao et al. (2005) characterized rice field distributions in southern 

China.  The unique NDVI profiles associated with rice transplanting, growing and fallow 

periods were found to be particularly useful in their mapping task.  Lobell and Asner 

(2004) found high inter-class variability and low intra-class separability for MODIS 16-

day 250 m NDVI for cropland mapping resulting from sub-pixel heterogeneity.  Wardlow 

et al. (2007) analyzed time-series data for individual crop types and concluded that 

MODIS 250 m NDVI data had sufficient spatial and temporal resolution for major crop 

type identification in Kansas, USA.  

Many researchers have suggested that operational cropland mapping over large 

study areas represents a significant challenge (Lobell and Asner, 2004; Wardlow et al., 

2008; Xiao et al., 2005).   To date, most MODIS NDVI analyses have only focused on 
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single-year mapping effort.   A significant impediment has been the lack of quality 

training data or reference imagery that is not limited in geographic area or temporal 

resolution.  Direct visual interpretation of MODIS NDVI temporal profiles represent an 

alternative approach to collect or augment training data points.   

The selection of a classification algorithm and the analytical approach are also 

important considerations to achieve an optimal result (Duda, 2001).  Currently, decision 

tree is one of the most commonly used in crop mapping research (Chang et al., 2007; 

Wardlow et al., 2008).  Neural network classifiers (NNCs), although intensively used in 

other remote sensing classifications, have received much less attention for crop mapping 

(Benediktsson et al., 1990; Goel et al, 2003; Huang et al., 2002; Liu et al., 2005). 

Analytical approaches such as image stratification (Homer et al., 1997; Wardlow et al., 

2008) and incorporating ancillary data or prior probabilities (Foody 1995; McIver and 

Friedl, 2002; Strahler et al., 1980) were also found to be useful in complex classification 

tasks.  Few studies, however, have incorporated agricultural census data or other crop 

statistics to improve crop mapping results.  

The validation of large area mapping products also presents a difficult challenge.  

Past large area mapping efforts did not have accuracy assessment; while others have only 

provided vague error statistics (Foody, 2002; Justice et al., 2000).  The nature of 

classification errors are still poorly understood especially sub-regional differences and the 

interactions between crop field sizes.  Accordingly, MODIS NDVI sub-regional scale 

classification performances are a research issue of importance to the general scientific 

community. 
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1.1 Research Objectives 

 The objective of this research was to evaluate the potential of using the MODIS-

NDVI 16-day composite 250 m product (MOD13Q) time-series data to develop an 

annual cropland mapping capability for the entire 480,000 km2 Great Lakes Basin (GLB).  

The cropland mapping design incorporated a two-stage classification protocol to first (a) 

differentiate cropland vs. non-cropland, and then (b) identify individual crop types. The 

classification of cropland vs. non-cropland provided a baseline dataset to support both the 

more detailed individual crop type identification and to provide a cropland mask for non-

agricultural land-cover (LC) classification and change detection efforts.  Major GLB crop 

types considered in this study were corn, hay, soybean, and wheat.  We implemented and 

assessed crop mapping results for years 2002 and 2007.   

The methods developed in this study are potentially important to many 

researchers attempting to characterize the annual change of crop distributions and to 

monitor crop rotation patterns across large geographic regions.  For calendar year 2002, 

we were interested in the utility of the NASS county level agricultural census data 

(NASS, 2004) to provide priors to improve the individual crop mapping results and to 

support non-site specific (unit area) classification accuracy assessments. For calendar 

year 2007, the availability of CDLs for reference data development supported a pixel-

wise (per-pixel) assessment of classification performances.  We were also interested in 

examining the spatial variations (ecosystem) of classification performances across the 

international GLB study area and investigate the impacts of crop field sizes on the 

classification performance.   



 

 

6
1.2 Study Area 

 The GLB is one of the most heavily industrialized regions in North America, but 

also a region that supports a variety of unique ecosystem services which include 

numerous intensively managed land-use activities.  Agricultural production in the GLB 

represents 7% of U.S. and 25% of Canadian agricultural production (USEPA, 2008).  

Through population growth and redistribution, urban expansion, and loss of natural areas 

to development, numerous human induced alterations have occurred resulting in 

substantial land degradation, deterioration of air and water quality, degradation of 

watershed habitats, and trajectories of LC change that have substantially altered 

biodiversity and ecological services (Crosbie et al., 1999; Wolter et al., 2006).  Although 

the US and Canada share stewardship of the GLB, no single or common mapping effort 

to monitor annual crop distributions was currently available or ongoing. 

 

2. Methods 

 Numerous data sets were first assembled including the MODIS 16-Day composite 

NDVI data (MOD13Q1) from 2000−2007 acquired from the USGS EROS Data Center. 

The 16-day composite MODIS-NDVI data was re-projected from a sinusoidal into an 

Alber’s Equal Area Conic projection.  The MODIS-NDVI data were then preprocessed 

using the method described by Lunetta et al. (2006) to provide a high quality 

uninterrupted data stream to support multi-temporal (phenology) analysis.  Non high 

quality NDVI data values (i.e., clouds, shadows, etc.) identified by the NASA quality 

control (QC) flags were removed.  A discrete Fourier transformation was then used to 
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decompose the NDVI time-series into low-frequency components and high-frequency 

components of noise.  The NDVI values removed in the filtering process were then 

transformed into the frequency domain using a discrete Fourier transformation and the 

signal and noise spectrum seperated.  Data points were estimated from the frequency 

domain signal spectrum using a nonlinear de-convolution approach (Roberts et al., 1987).  

This technique generated a “clean” NDVI temporal profile used to support phenology-

based image classifications (Lunetta et al., 2006).  

 All available Landsat TM and ETM images from 2000 to 2002 were acquired for 

the GLB from the EROS Data Center’s Global Land Cover Facility.  Two seamless 

image mosaics were created from the Landsat imagery including a panchromatic image 

(15 m) and a false color IR composite (CIR) image using bands 4,3,2 (30 m).  These 

mosaics served as the reference data for identifying training and test sites for the analysis 

of MODIS-NDVI data.  The mosaics were particularly usefully for cropland vs. non-

cropland classification.  The crop data layer (CDL 2007) was obtained from the U.S. 

Department of Agriculture (USDA) National Agriculture Statistics Service (NASS).  The 

CDL 2007 was derived mainly from AWiFS imagery and provided partial GLB coverage 

(i.e., Illinois, Indiana, Michigan, Minnesota, Ohio and Wisconsin).  The CDL 2007 

served as the reference data for the validation of 2007 MODIS-NDVI classification. The 

overall accuracy of the CDL 2007 was determined by NASS to be >90 percent and the 

accuracies for the three major crop types (e.g., corn, soybean, and wheat) >92 percent 

(NASS, 2008). Additionally, the NASS county level agricultural census data (2002) were 

used to support the 2002 MODIS NDVI classification and validation.  The NASS 2002 
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agricultural census represented the most recent agricultural statistics dataset 

corresponding to the US portion of the GLB.  Validation efforts were limited to the US 

portion of the GLB, because no reference data sets were available for Canada. 

 

2.1 Cropland vs. Non-Cropland 

 We applied a stratification of the study region to perform the cropland vs. non-

cropland classification. The GLB was first stratified into 12 ecoregions (Plate 1).  A total 

of 10 ecoregions were located in the U.S. portion of the GLB and the remaining two in 

Canada (Omernik, 1987).  Training samples were selected independently for each 

ecoregion corresponding to a minimum of 1,000 cropland and 1,000 non-cropland pixels 

for each ecoregion. The Landsat seamless mosaic images were used as the primary 

reference data for the selection of these training data.  To account for the coarser 

resolution MODIS data and minimize the effects of registration and edge effects, training 

pixels were selected in the center of large homogeneous areas. 

We applied a NNC approach for the cropland mapping. The software used for 

neural network training and classification was the UNIX-based SNNS software package 

(SNNS, 1993).  A multi-layer perceptron (MLP) NNC was designed for this study that 

consisted of three connected layers including the input, hidden, and output layers.  A total 

of 13 input nodes were used at the input layer, corresponding to 13 NDVI dates (Julian 

day 81 to 273) from the 2002 MODIS NDVI MOD13Q data product.  The hidden layer 

used 10 nodes and only one output node was used at the output layer.  The network was 

trained with a back-propagation algorithm and a sigmoid activation function.  A three-
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fold stratified cross-validation was used to improve the overall generalization ability 

(Bishop 2006; Duda 2001). The network was trained to produce output values (codes) 

corresponding to cropland (1.0) and non-cropland pixels (0.0).   An output value near 1.0 

suggested a high probability of being cropland.  We applied thresholding (> 0.5) of the 

network output to label each pixel.  The MODIS NDVI data were scaled to values 

between 0.0 −1.0 prior to their input into the MLP-NNC.  

For each ecoregion, the resultant cropland map was overlaid onto the Landsat 

panchromatic mosaic and the MODIS-NDVI images.  An overall visual interpretation 

was first performed to provide a qualitative assessment of the correspondence between 

the derived cropland and the reference datasets.  For ecoregions determined to have a 

poor level of correspondence, additional training data points were added to improve the 

classification performance.  A minimal level of post-classification manual editing was 

also conducted to remove obvious classification errors to produce a final cropland mask. 

 

2.2 Crop Type Classification (2002) 

The cropland mask was used as the baseline dataset for the subsequent 

identification of individual crop types.  All the non-cropland pixels were eliminated from 

individual crop type identification processing.  The training sets for the individual crop 

types were developed primarily based on the visual interpretation of NDVI temporal 

profiles of pixels within the cropland mask.  Four main crop types (i.e., corn, soybean, 

wheat and hay) represented the majority of cropland (> 80%) across the US portion of the 

GLB (NASS, 2004).  Importantly, these crop types often have unique NDVI temporal 



 

 

10
signals that can readily be visual interpretation (Wardlow et al., 2008).  The selection 

of training data for individual crop identification was also ecoregion-based.  Initially, a 

minimum of 250 training pixels for each crop type were selected per each ecoregion. 

Individual crop type classifications were performed using NNC.  As indicated above, a 

three-layer NNC was designed, 13 and 10 nodes were used at input layer and hidden 

layer, respectively. Four nodes were used at the output layer, corresponding to the 

individual crop types of corn, soybean, wheat, and hay.  The target values were set as the 

1-of-M target coding system (i.e., 1,0,0,0 = corn; 0,1,0,0 = soybean; 0,0,1,0 = wheat; 

0,0,0,1 = hay).  

We used a subset of the 2002 agricultural census statistics to derive class prior 

probabilities and improve the classification results.  Specifically, 19 percent of counties 

within each ecoregion were randomly selected ─ totaling 29 counties across the entire 

GLB.  A priori class probability, P(ci), was calculated for each of the four crop types 

using the county level agricultural census statistics; which represented the percentage of 

crop area belonging to class ci.  For all input cropland pixels within the selected counties, 

the neural network outputs were averaged at each of the four output nodes to derive 

Ave(Yi). These values should be close to prior class probability P(ci), if neural network 

classifier approximates the probabilities of class membership for each class (Bishop, 

1995; Richard and Lippmann, 1991).  We compared Ave(Yi) to prior class probabilities 

using a relative entropy distance measure suggested by Richard and Lippmann (1991): 

∑
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A large entropy distance typically suggests inaccurate or poor classification 

performance.   The addition of training data points and modification of neural network 

training protocols were repeated until a minimum entropy distance measure was obtained. 

The trained neural networks were then used to classify all the cropland pixels in the GLB. 

We used thresholding of network outputs to label the pixels.  Rejection criteria were 

applied to pixels with low output values (<0.5) at all output nodes. 

The accuracy assessment of 2002 MODIS NDVI cropland classification was first 

conducted at the county aggregated level.  The areas of total cropland versus non-

cropland were aggregated for each county completely located inside the GLB boundary 

(n =150). Included were counties from Wisconsin (20), Indiana (7), Michigan (83), New 

York (16), and Ohio (24).  Next, cross-plots were also generated for specific crop types 

(corn, soybeans, wheat and hay) to evaluate the differences between MODIS-NDVI 

derived results and the 2002 USDA census statistics.  Out of the 150 counties, 29 were 

used to support the individual crop type training of NDVI profiles and 121 were used for 

the accuracy assessment. Two quantitative measures, the root-mean-square error (RMSE) 

and systematic error (SE), were calculated to describe average differences. RMSE and SE 

were calculated using the following equations: 
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 where Ei is the estimated crop area from MODIS-NDVI data, Ai is the crop 

area from the NASS census statistics, and n is the total number of counties used.  The 

comparison was conducted only for the US portion of GLB (no companion agricultural 

statistics data were available for Canada).  

 

2.3 Crop Type Classification (2007) 

 The training data for 2007 MODIS NDVI classification were collected using 

visual interpretation of MODIS NDVI temporal profiles.  For each ecoregion, a minimum 

of 250 training pixels were selected for each of the individual crop types.  Again, a three-

layer NNC was used to classify MODIS NDVI pixels.  The 2007 CDL was primarily 

used for the accuracy assessments of MODIS NDVI classification.  A large reference 

dataset was developed from the 2007 CDL to support the accuracy assessment.  First, all 

MODIS NDVI pixels were identified that corresponded to a 350 x 350 m homogeneous 

crop patches in 2007 CDL.  These labeled MODIS NDVI pixels were further stratified by 

ecoregions to support accuracy assessments at both GLB and individual ecoregion scales.  

Error matrices and kappa coefficients were generated for the accuracy assessments 

(Congalton and Green, 1999). It should be noted that the 2007 CDL covered only a 

portion (ecoregions 4 − 10) of the GLB study area (Plate 1).  

 The 2007 CDL data was also used to assess impacts attributable to crop field sizes 

on MODIS NDVI classification performance.  Thematic layers corresponding to 

individual crops were first extracted from the 2007 CDL to represent each of the four 

major crop types.  Next, a majority filter with a 3 x 3 window was used to remove 
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inclusions (salt and pepper).  For each of the four individual crop types, we then 

identified all homogenous patches using an eight-cell contiguity rule (McGarigal and 

Marks, 1995).  The size of each crop patch was calculated to provide an average crop 

patch sizes for individual ecoregions.  The mean crop patch sizes were further examined 

in the context of MODIS NDVI spatial resolution and the regional differences of crop 

mapping performances were assessed.  

 

3. Results  

3.1 Cropland vs. Non-Cropland  

 The results for cropland and non-cropland classification were compared to the 

NASS census statistics (Fig. 1).  The mean NASS census cropland area for GLB counties 

was 410.38 km2 compared to 420.62 km2 for the MODIS NDVI classification in 2002.  In 

general, the MODIS NDVI classification over-estimated cropland area (SE=10.2 km2) by 

approximately 2.5 percent across the US portion of the GLB.  This may be attributed to 

the over-sampling of cropland pixels in the training data, because classification results 

from non-parametric classifiers such as neural networks are sensitive to the class 

frequency distributions of training data (Foody et al., 1995; Mciver and Friedl, 2002).  

The cross-plot showed relatively larger scattering for counties with less than 200 km2 

cropland acreages.  The RMSE value was 65.5 km2.  For 84 of 150 counties, the 

estimated cropland acreages were within the 15% error bounds of the NASS census data.  

SE and RMSE values were calculated and compared for the 10 US-GLB 

ecoregions (Table 1).  The mean of cropland acreage in each ecoregion was also reported 
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for the NASS census data and the MODIS NDVI estimates, respectively.  For NASS 

census, the means of cropland acreages ranged from 61.0 km2 (ecoregion 9) to 810.0 km2 

(ecoregion 5).  The MODIS NDVI classification slightly overestimated cropland for 

almost all ecoregions except ecoregion 4 (SE=-18.6 km2). RMSE values ranged from 

37.3 to 98.8 km2 across ecoregions.  Ecoregion 8 had the highest RMSE value (98.8 

km2).   The high RMSE was attributed to one county that had very large difference that 

inflated the MODIS estimated 2002 cropland acreage value.  Ecoregions 4 and 5 had the 

intermediate levels of RMSE, but they were relatively small compared to the means of 

cropland acreages.  Initial visual interpretation also indicated that there was reasonable 

agreements between MODIS NDVI derived cropland map and Landsat seamless mosaic.  

Visual interpretation of MODIS NDVI classification result also suggested that ecoregion 

9 was the most problematic region.  The SE (10.3 km2) and RMSE (37.3 km2) values 

were relatively high compare to its mean cropland acreage, some forest and wetland 

pixels were falsely labeled as cropland pixels.  One reason is that ecoregion 9 is located 

further north and includes Michigan's Upper Peninsula.  Confusions of croplands and 

forests often occurred at high latitudes for phenology-based NDVI classification (Friedl 

et al. 2000; Loveland et al., 1999).   Degraded MODIS NDVI quality might be another 

explanation because NDVI data quality tends to decrease at high latitudes. 

 Some individual counties initially had large differences (i.e., >150 km2) of 

cropland estimations compared to the NASS census statistics.  For example, in both 

Montcalm county (MI) and Pulnam County (OH), the MODIS-NDVI classification 

greatly underestimated the total cropland.  We determined that there were some croplands 
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with unique NDVI temporal profiles and the training signals selected for the ecoregion 

did not adequately representative for these counties.  Therefore, we added these missing 

training signals for neural network training and reprocessed the counties.  Also, the 

MODIS-NDVI classification largely overestimated cropland for several counties with 

substantial suburban residential areas.  Low density residential areas often contained 

mixed vegetation and impervious cover types.  Depending on the level of spatial mixing 

and the vegetation phenology attributes, pixels in low density residential areas often 

mimicked the phonological cycle of cropland areas, resulting in classification errors.  

Minimal post-classification manual editing was conducted to remove the obvious 

classification errors.  For the majority of counties, a visual inspection of the cropland map 

with the Landsat seamless mosaic did not reveal any obvious errors associated with the 

MODIS-NDVI classification (i.e., other cover types being classified as cropland).  The 

observed errors were largely attributable to the 250 m resolution limitation of MODIS-

NDVI data.  Because mixed pixels were labeled as a single cover type, the total cropland 

estimations may differ substantially compared to the actual cropland acreages (Lobell and 

Asner, 2004). 

 

3.2 Crop Type Classifications (2002) 

Individual crop types typically have unique NDVI temporal profiles. This allowed 

the analyst to collect training pixels through visual interpretation of the MODIS NDVI 

time-series data.  Fig. 2 shows the 2002 NDVI temporal profiles of four major crop types 

for selected training samples from ecoregion 6; which corresponded to areas in southern 
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MI.  Winter wheat had higher NDVI values in spring (Julian day 129) compared to the 

other three major crop types, and then values quickly drop to the lowest among four crop 

types around Julian day 209.  Michigan corn began growing in early-May and peaked in 

late-July (Julian day 209).  The planting of soybeans was about two weeks later than 

corn, resulting in large NDVI differences in the range of Julian day 177 to 209.  A 

majority of MI hay was alfalfa and similar to winter wheat, NDVI values peaked in early-

June (Julian day 161).  Depending on the timing of cutting, there might be local peaks in 

the temporal profiles (Wardlow et al. 2007).  

An initial crop classification was conducted by using 250 training samples for 

each class.  The resulting crop type map was aggregated to county level and compared to 

the 2002 NASS census statistics.  For corn, soybeans, wheat and hay, the SE values were 

10.1, -18.3, 9.8, and 15.1 km2 and RMSE 65.4, 58.5, 34.5, 39.6 km2, respectively.  The 

large degree of variability between the MODIS NDVI estimated crop acreage and the 

2002 NASS census statistics for all four crop types prompted additional NDVI signature 

refinement.  For most ecoregions, additional training pixels were added iteratively to 

improve classification performance by comparing the MODIS NDVI-derived crop 

acreages and the estimated priors for a selected subset of counties (i.e., 29 of 150). 

Final crop area estimations from 2002 MODIS NDVI classifications were then 

compared to the 2002 county level agricultural census statistics (Fig. 3 a-d).  The RMSE 

values (n = 121) were 41.6, 45.6, 19.5, and 22.8 km2 for corn, soybean, wheat, and hay, 

respectively.  These values were much smaller than the initial RMSE values derived 

without using incorporating prior information.  By incorporating priors, the MODIS 
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NDVI classification also obtained smaller systematic errors for corn (SE=3.0 km2), 

soybean (SE=-9.5 km2), wheat (SE=-1.8 km2), and hay (SE=-3.2 km2).  These values 

corresponded to 2.2, -6.8, -6.0, and -5.8 percent of bias compared to the means of crop 

acreages from 2002 NASS census data.  These results suggested good generalization 

ability, because only19 percent of counties were utilized for prior estimation.  Similar 

studies have been conducted by Mciver and Friedl (2002) to improve their agricultural 

land mapping effort, although there were differences in the selection/use of classification 

algorithm and the sources of prior information.  Without ground truth data or other 

reference data, the agricultural statistics are probably the only available dataset that can 

be used as quality control for individual crop mapping. 

From the Fig. 3 scatter plots, it appears that there are points with large differences 

between the MODIS NDVI classification and the 2002 NASS census statistics.  For 

example, the MODIS-NDVI classification greatly underestimated wheat acreages for 

Sanilac and Huron counties (MI).  This may be attributable to error propagations from the 

initial cropland and non-cropland classification.  (Some wheat fields may have been 

misclassified as non-croplands in the initial cropland classification.)  However, the large 

overestimation of wheat acreages in Paulding and Wood counties (OH) is difficult to 

explain.  Visual interpretation of NDVI temporal profiles did not reveal major 

commission errors from other crop types.  

Plate 2 (a-b) shows the general cropland extent and the spatial distributions of the 

four major crop types in the study region. Corn and soybean were dominant crop types in 

ecoregions 4, 5 and 6.  The two crop types contribute over 70% of the total crop acreage 
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for most counties in these ecoregions.  In ecoregions 7 and 9 (MI’s Upper Peninsula), 

hay was the dominant crop type (>60%) for most counties.  A majority of wheat fields 

were located in ecoregions 4 and 5.  For ecoregions 8 and 10, corn and hay were the 

dominant crop types.  Table 2 shows the comparisons of SE and RMSE values derived 

for eight individual ecoregions (combinations).  The mean of cropland acreage in each 

ecoregion was also reported for both the NASS census statistics and the MODIS NDVI 

estimates, respectively.  Mean values were calculated to allow a meaningful comparison 

between ecoregions by dividing the total crop area by the number of counties.  There 

were large variations of crop distributions for all four crop types across ecoregions.  For 

example, the means of soybean acreages ranged from 1.8 km2 for ecoregion 9 to 402.4 

km2 for ecoregion 4.  For all four crop types, the estimated means of crop acreages were 

close to the mean values derived from 2002 agricultural census.  Across ecoregions, SE 

values were only slightly higher or lower than 0 for all four individual crop types, 

suggesting unbiased estimation from MODIS NDVI classification.  The RMSE values 

had large variations across ecoregions, but most were proportional to the means of crop 

acreages.  

 

3.3 Crop Type Classifications (2007) 

A pixel-wise accuracy assessment of the 2007 MODIS NDVI classification was 

performed using 2007 CDL as reference.  For the entire GLB study area, the overall 

accuracy was 84 percent (n = 231,616) with a Kappa coefficient of 0.73 (Table 3).  The 

accuracies of corn and soybean were 87 and 82 percent, respectively.  Both soybean and 



 

 

19
corn are summer crops with similar NDVI temporal profiles.  The moderate levels of 

commission/omission errors indicated the level of confusions between these two classes.  

This is consistent with results from previous researches of corn and soybean mapping 

(Chang et al., 2007).  Wheat had a classification accuracy of 81 percent with commission 

errors mostly attributed to both corn and soybean.  The accuracy of hay classification was 

the lowest at 70 percent and the large commission error was largely associated with corn.  

The low accuracy of hay identification was possibly related to its varying harvest time.  

Farmers typically cut hay several times a year. This caused large variations of NDVI 

temporal profiles and the deterioration of classification performance.  

The accuracy assessments were also conducted for individual ecoregions (Table 

4).   There was no reference data available for ecoregions 1 and 2.  Ecoregions 3 and 9 

were also dropped due to insufficient sample size for statistical analysis.  Across 

ecoregions, the overall accuracies ranged from 77 percent (ecoregion 7) to 86 percent 

(ecoregion 8).   Kappa coefficients were approximately 0.70 for almost all ecoregions.  

The classification of corn performed best as accuracies were above 80 percent for all 12 

ecoregions.  The classification performances of wheat were also consistent spatially. 

Accuracies were around 80 percent for almost all ecoregions except ecoregion 7 (70 

percent).  For soybean and hay, however, accuracies were highly varied.  Ecoregions 4, 5, 

and 6 had good soybean classification performances with above 75 percent accuracy, 

while ecoregions 7, 8 and 10 had high commission errors of 49, 44 and 33 percent, 

respectively.  Large numbers of corn pixels were falsely classified as soybean.  However, 
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hay classification accuracies associated with ecoregions 7, 8 and 10 were much higher 

than the numbers at ecoregions 4, 5 and 6.  

Using 2007 CDL data, we further examined the sizes of crop patches and their 

impacts on the classification performances.  Fig. 4 shows the mean crop patch sizes of 

four crop types for selected ecoregions.  In general, large crop patch size suggested less 

sub-pixel mixing and a more “pure” crop phenology.  Larger patch sizes also tend to 

mitigate MODIS image registration problems with the 2007 CDL reference data.  Higher 

classification accuracies were expected for crop types with large homogeneous patches. 

Across the US portion of the GLB, corn had relatively large mean patch sizes (>1.5 

MODIS pixel) and consistently high classification accuracies across regions.  For 

soybean, ecoregions 4, 5 and 6 had relatively large mean patch sizes (> 2.0 MODIS 

pixels), while ecoregions 7, 8, and 10 had mean patch sizes of less than 1.5 MODIS 

pixels.  This explained the differences of classification accuracies between ecoregions 4, 

5, 6 and ecoregions 7, 8, and 10.  The mean crop patch sizes of hay were less than 1.0 

MODIS pixel in ecoregions 4, 5, and 6.  Large classification errors were expected as most 

hay pixels were not “pure” pixels.  The impacts of crop patch sizes on wheat 

classification were less interpretable.  The accuracies of wheat classification were 

consistently high across ecoregions while the mean crop patch sizes were relatively small 

(<1.5 MODIS pixels) in ecoregions 6, 7, 8, and 10.  It should be noted that there are 

many other factors, such as the shapes of crop patches and uncertainty of 2007 CDL 

reference data were not considered in the research.  Further insights could be derived by 

thoroughly examining their interactions and impacts on the crop mapping performances.  
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4. Discussion 

 This study examined the potential of MODIS-NDVI data for the classification of 

cropland and the identification of four individual crop types across the GLB.  The 

classification of cropland versus non-cropland was developed first utilizing a Landsat 

TM/ETM seamless mosaic image as a locational information source to derive phenology 

training data for the MODIS-NDVI data classification.  The estimated county level 

cropland acreages were consistent with the NASS county level census data for a majority 

of counties in the US portion of the GLB.  The main confusion was between cropland and 

forest, as well as cropland and low density residential area.  The changing illumination 

angle may affect NDVI temporal profiles (Goward et al., 1991), causing misclassification 

of forest and cropland in high latitude regions.  Confusion between cropland and urban 

land-cover has been reported by many urban remote sensing classification researches 

using single date imagery analysis (i.e., Paola and Schowengerdt, 1995; Wu and Murray, 

2003).  We expected that the phenology-based MODIS NDVI classification would 

improve the performance due to the multi-temporal approach; however, the challenge 

remains for low density residential areas where MODIS NDVI pixels have mixed cover 

types of vegetation and impervious cover.  Further research is needed to understand the 

compositions and the levels of spatial mixture, as well as their impacts on the MODIS 

NDVI temporal profiles.  

One of the main challenges for individual crop type classification was the lack of 

available training data.  This is especially the case if crop map products for multiple years 

or crop rotation information are needed.  A research objective of this study was to assess 
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the classification performance using MODIS NDVI image-based training data (end-

member) selection.  Training data points were selected primarily through the visual 

interpretation of MODIS NDVI temporal profiles.  This approach could be employed in 

other studies, regions or years − independent of reference crop data.  For the 2002 

MODIS NDVI classification, selected agricultural statistics were also incorporated as 

priors to improve the neural network training and classification.  This can be particularly 

useful for crop mapping in the absence of available ground truth or training data, because 

agricultural statistics are generally available for most agricultural regions.  Although no 

pixel-wise accuracy assessments were conducted for 2002 MODIS NDVI (no CDL data) 

classification, we expected an improved classification performance by incorporating 

priors, as suggested by many other researchers (Mciver and Friedl, 2002; Strahler et al., 

1980).  

The pixel-wise accuracy assessments for the 2007 MODIS NDVI classifications 

were compared across a sub-set of ecoregions.  The dominate sources of confusions were 

between corn and soybean, resulting in moderate levels of commission and omission 

errors.  These two crop types exhibited similar temporal NDVI profiles.  To increase 

future performance, other MODIS products such as surface reflectance and surface 

temperature, could be included as input features to enhance separability (e.g., Chang et al. 

2007).   This research also demonstrated that the spatial variations of classification errors 

were closely related to crop field sizes; especially, for soybean and hay.  Ecoregions 4, 5 

and 6 had good classification performance for soybean because of large soybean patch 

sizes.  However, they had small crop patch sizes for hay, resulted in difficulty of hay 
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classification.  The scale factor in remote sensing (Woodcock and Strahler, 1987) and 

the impacts of image misregistration (Townshend et al, 1992) are well suited for 

understanding the spatial variation of classification performances. 

 The phenology-based classification was conducted at ecoregion scale across the 

GLB.  This was attributed to the highly variable nature of cropland phenology across 

large geographic regions (Lobell and Asner, 2004; Wardlow et al, 2008).  The main 

disadvantage of image stratification before classification is level-of-effort.  Instead of 

using a single universal classifier, we developed 12 individual classifiers for the entire 

study region.  Independent training, validation and testing were also developed for each 

classifier.   This suggests a trade-off of classification performance and cost.  Future study 

on this topic is needed to determine the feasibility of reducing the total number of 

stratification elements and still maintain the overall classification performance.  Also, 

further research is needed to examine the feasibility of using a “temporal generalization” 

of MODIS NDVI classification over multiple years to support future crop type mapping 

efforts.  

 

5. Conclusions 

 The 250-m MODIS-NDVI data was used for developing cropland mask and 

identification of four major crop types in the GLB.  For cropland classification, the 

accuracies of crop acreage estimates at the county level were determined to be 

representative to those published by the USDA NASS for the same calendar year 

(SE=10.2 km2).  Outliers included some counties with poor NDVI data quality, those 
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with substantial plantings of crops other than corn, soybean, wheat and hay, and 

northern counties that were dominated by hay.  For 2002 individual crop identification, 

part of agricultural census statistics were incorporated in the neural network 

classification, thus improved the crop mapping results.  Pixel-wise accuracy assessments 

were conducted for 2007 crop type mapping.  At GLB scale, the accuracies for corn, 

soybean, and wheat are all at the acceptable level.  Hay has the lowest accuracy because 

of highly variable temporal profiles.  For soybean and hay, there were large regional 

differences of classification performances which can be explained by varying crop patch 

sizes across ecoregions. Overall results suggested that a phenology-based MODIS-NDVI 

classification approach has high potential for regional scale monitoring of annual 

agricultural land-use activities across intensively managed croplands located in the 

Midwest region of the United States and Canada. 
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Tables 

Table 1. MODIS-NDVI classification results for cropland corresponding to individual 

  ecoregions.  Cropland estimations derived from MODIS-NDVI classification 

  (2002) were compared with the NASS census data (2002).  Mean values were 

  calculated by dividing the total area by the number of counties per ecoregion. 

  Ecoregions 1,2 and 3 were combined to provide a sufficient number of counties to 

  support a comparative analysis.  Units are km2 for all statistics.  

 

Table 2. MODIS-NDVI classification results for crop types corresponding to individual 

  ecoregions.  Crop type estimations derived from MODIS-NDVI classification 

  (2002) were compared with the NASS census data (2002).  Mean values were 

  calculated by dividing the total area by counties per ecoregion. Units are km2 for 

  all statistics. 

 

Table 3.  Normalized accuracy assessment statistics for the GLB using the NASS CDL 

  (2007) as reference data. 

 

Table 4.  Error matrices using NASS 2007 data as reference. Note that ecoregions 1, 2, 3, 

  9, 11 and 12 were not included.  NASS 2007 data was not available (1and 2) or 

  insufficient (3 and 9) and no data (11 and 12). 
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Figures 

Fig. 1.  Comparisons of total cropland estimates using end-members corresponding to 

individual ecoregions (n = 12) for MODIS-NDVI classifications versus NASS 

county level census data (2002). 

 

Fig. 2. MODIS-NDVI temporal profiles (end-members) representing the major Michigan 

crop types.  Profiles represent average values for corn, soybean, hay and wheat. 

 

Fig. 3. Comparisons of individual crop type estimates from the MODIS-NDVI 2002 

classifications versus the NASS 2002 census data for corn (a), soybean (b), hay 

(c), and wheat (d). 

 

Fig. 4.  Mean patch size for corn, soybeans, wheat, and hay by ecoregion. 

 

Plates 

Plate 1.  Ecological regions within the United States portion of the Great Lakes Basin  

 (n = 12).  Ecoregion boundaries were used to stratify the MODIS-NDVI 

classifications (Omernik, 21987). 

 

Plate 2. MODIS-NDVI cropland classification results for 2002 using the neural network 

classifier (a) and the distribution of the four major crop types (corn, soybean, 

wheat and hay) across the entire Great Lakes Basin (b). 



Table 1. MODIS-NDVI classification results for cropland corresponding  
to individual ecoregions.  Cropland estimations derived from MODIS-NDVI 
classification (2002) were compared with the NASS census data (2002).   
Mean values were calculated by dividing the total area by the number of  
counties per ecoregion. Ecoregions 1,2 and 3 were combined to provide a  
sufficient number of counties to support a comparative analysis.  Units are  
km2 for all statistics.  
 
Ecoregion ID  Mean_NASS Mean_MODIS SE RMSE 
Ecoregion 1,2,&3 329.9 333.4 3.5 68.3 
Ecoregion 4 781.6 763.0 -18.6 73.6 
Ecoregion 5 809.9 839.7 29.7 72.3 
Ecoregion 6 488.1 500.4 12.3 61.5 
Ecoregion 7 90.8 97.6 6.8 54.5 
Ecoregion 8 336.3 368.9 32.6 98.8 
Ecoregion 9 61.0 71.3 10.3 37.3 
Ecoregion 10 510.1 512.5 2.4 71.5 

   
  GLB Overall                 410.4                        420.6             10.2    65.5                                                                      
  Mean_NASS (NASS census data)                                                                                        
  Mean_MODIS (MODIS NDVI classification) 
  SE (systematic error)   
  RMSE (root-mean-square-error) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Table 2. MODIS-NDVI classification results for crop types corresponding to  
individual ecoregions.  Crop type estimations derived from MODIS-NDVI  
classification (2002) were compared with the NASS census data (2002).   
Mean values were calculated by dividing the total area by counties per  
ecoregion. Units are km2 for all statistics. 
 
Ecoregion ID  Mean_NASS Mean_MODIS SE RMSE 
Corn         
Ecoregion 1,2,&3 102.0 112.2 10.2 38.2 
Ecoregion 4 263.8 265.3 1.5 50.9 
Ecoregion 5 252.7 275.2 22.5 54.0 
Ecoregion 6 180.3 175.1 -5.2 50.6 
Ecoregion 7 16.4 18.0 1.5 13.5 
Ecoregion 8 127.0 141.4 14.3 23.1 
Ecoregion 9 10.0 11.7 1.7 5.4 
Ecoregion 10 197.3 186.4 -10.9 51.6 
     
Soybean         
Ecoregion 1,2,&3 47.9 34.8 -13.1 33.4 
Ecoregion 4 402.4 388.3 -14.1 79.0 
Ecoregion 5 389.4 372.3 -17.1 51.5 
Ecoregion 6 172.2 162.6 -9.6 53.7 
Ecoregion 7 6.6 3.4 -3.3 8.8 
Ecoregion 8 42.8 43.7 0.8 21.9 
Ecoregion 9 1.8 0.7 -1.2 5.4 
Ecoregion 10 86.5 71.7 -14.9 59.8 
     
Wheat         
Ecoregion 1,2,&3 24.1 24.6 0.5 14.0 
Ecoregion 4 80.4 76.2 -4.2 25.8 
Ecoregion 5 84.4 78.3 -6.1 43.0 
Ecoregion 6 27.1 25.5 -1.6 12.3 
Ecoregion 7 3.6 4.2 0.6 5.1 
Ecoregion 8 11.3 7.8 -3.5 8.8 
Ecoregion 9 0.6 0.3 -0.3 1.5 
Ecoregion 10 31.4 30.7 -0.7 10.4 
     
Hay         
Ecoregion 1,2,&3 86.1 79.8 -6.3 30.7 
Ecoregion 4 25.3 26.7 1.4 18.6 
Ecoregion 5 33.9 27.8 -6.1 16.3 
Ecoregion 6 61.7 54.4 -7.3 24.5 
Ecoregion 7 42.1 46.8 4.7 19.6 
Ecoregion 8 75.4 70.3 -5.0 27.4 
Ecoregion 9 34.8 30.8 -4.0 16.5 
Ecoregion 10 87.7 101.0 13.3 24.7 

Mean_NASS (NASS census data) 
Mean_MODIS (MODIS NDVI classification) 
SE (systematic error)   
RMSE (root-mean-square-error) 



Table 3. Normalized accuracy assessment statistics for the GLB using the NASS CDL 
(2007) as reference data 
 
Reference               

  
Corn  

% 
Soybean 

% 
Wheat 

% 
Hay  
% 

Total  
% 

%  
Correct 

%  
Commission 

Corn 45.48 5.99 0.34 0.24 52.05 87 13 
Soybean 6.22 29.59 0.28 0.05 36.15 82 18 
Wheat 0.64 0.44 5.02 0.11 6.21 81 19 
Hay 0.99 0.31 0.39 3.89 5.59 70 30 
 
Total % 53.33 36.33 6.04 4.29 100.00 84 

 
  (n = 231,616) 

 
% Correct 85 81 83 91    
 
% Omission 15 19 17 9   Kappa = 0.73 

                
                                                                                                                              
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Table 4. Error matrices using NASS 2007 data as reference. Note that ecoregions 1, 2, 3, 9, 11 and 12 were 
not included.  NASS 2007 data was not available (1and 2) or insufficient (3 and 9) and no data (11 and 12). 
 
Reference               

  Corn Soybean Wheat Hay Total   % Correct % Commission 
Ecoregion 4        
Corn 18403 3971 81 4 22459 82 18 
Soybean 2857 20056 99 11 23023 87 13 
Wheat 245 323 2170 10 2748 79 21 
Hay 228 144 144 181 697 26 74 
Total  21733 24494 2494 206  83 ( n = 48,927) 
% Correct 85 82 87 88    
 % Omission 15 18 13 12   Kappa = 0.70 
        
Ecoregion 5        
Corn 27260 4237 395 48 31940 85 15 
Soybean 4724 27079 427 29 32259 84 16 
Wheat 602 462 4533 26 5623 81 19 
Hay 320 274 249 414 1257 33 67 
Total  32906 32052 5604 517  83 ( n = 71,079) 
% Correct 83 84 81 80    
 % Omission 17 16 19 20   Kappa = 0.71 
        
Ecoregion 6        
Corn 42816 3833 122 63 46834 91 9 
Soybean 6086 20146 113 38 26383 76 24 
Wheat 396 188 2951 43 3578 82 18 
Hay 658 208 139 1435 2440 59 41 
Total  49956 24375 3325 1579  85 ( n = 79,235) 
% Correct 86 83 89 91    
 % Omission 14 17 11 9   Kappa = 0.71 
        
Ecoregion 7        
Corn 771 72 20 53 916 84 16 
Soybean 201 260 10 41 512 51 49 
Wheat 40 14 258 58 370 70 30 
Hay 69 11 36 750 866 87 13 
Total  1081 357 324 902  77 ( n = 2,664) 
% Correct 71 73 80 83    
 % Omission 29 27 20 17   Kappa = 0.67 
        
Ecoregion 8        
Corn 5710 491 48 204 6453 88 12 
Soybean 184 246 2 6 438 56 44 
Wheat 70 8 502 59 639 79 21 
Hay 403 23 91 2926 3443 85 15 
Total  6367 768 643 3195  86 ( n = 10,973) 
% Correct 90 32 78 92    
 % Omission 10 68 22 8   Kappa = 0.74 
        
Ecoregion 10        
Corn 10374 1276 132 175 11957 87 13 
Soybean 359 747 9 2 1117 67 33 
Wheat 130 17 1219 51 1417 86 14 
Hay 623 61 250 3313 4247 78 22 
Total  11486 2101 1610 3541  84 ( n = 18,738) 
% Correct 90 36 76 94    
 % Omission 10 64 24 6   Kappa = 0.70 



 
 
 
 
 
 
 
 
 
 
 

 
 
 Fig. 1. Comparisons of cropland estimations using end-members corresponding  

 to 12 individual ecoregions for MODIS-NDVI classifications versus NASS 

census statistics (2002).   

 



 
 
 

     Fig. 2. MODIS-NDVI temporal profiles (end-members) for the  

     four major Michigan crop types (ecoregion 6). The NDVI values  

     were averaged for corn, soybean, hay, and wheat.  

 
 



 

 
  

 Fig. 3. Comparisons of individual crop type estimations from MODIS-NDVI 

2002 classification and NASS 2002 census data for corn (a), soybean (b), hay (c), 

and wheat (d).   

 

 
 
 
 



 
 
 Fig. 4. Mean patch sizes for corn, soybean, wheat, and hay by ecoregion  
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     Plate 2. 
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